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Figure 1: Given a text prompt "Messi", our method (AvatarFusion) effectively alleviates (a) the problem of facial distortion and
unrealistic clothing and generates more photo-realistic avatars. To achieve this, we introduce (b) an avatar-specific model and a
pixel-level diffusion supervision (PS-DS) which separates the generation of skin and clothing for better realism.

ABSTRACT
Large-scale pre-trained vision-language models allow for the zero-
shot text-based generation of 3D avatars. The previous state-of-the-
art method utilized CLIP to supervise neural implicit models that
reconstructed a human body mesh. However, this approach has
two limitations. Firstly, the lack of avatar-specific models can cause
facial distortion and unrealistic clothing in the generated avatars.
Secondly, CLIP only provides optimization direction for the overall
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appearance, resulting in less impressive results. To address these
limitations, we propose AvatarFusion, the first framework to use a
latent diffusionmodel to provide pixel-level guidance for generating
human-realistic avatars while simultaneously segmenting clothing
from the avatar’s body. AvatarFusion includes the first clothing-
decoupled neural implicit avatar model that employs a novel Dual
Volume Rendering strategy to render the decoupled skin and cloth-
ing sub-models in one space. We also introduce a novel optimiza-
tion method, called Pixel-Semantics Difference-Sampling (PS-DS),
which semantically separates the generation of body and clothes,
and generates a variety of clothing styles. Moreover, we establish
the first benchmark for zero-shot text-to-avatar generation. Our
experimental results demonstrate that our framework outperforms
previous approaches, with significant improvements observed in
all metrics. Additionally, since our model is clothing-decoupled,
we can exchange the clothes of avatars. Code are available on our
project page https://hansenhuang0823.github.io/AvatarFusion.
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1 INTRODUCTION
Recently, the zero-shot text-to-avatar generation task has become
feasible due to the emergence of large-scale vision-language models
[34, 35, 37, 38]. This task utilizes these pre-trained models as super-
vision to create highly compelling avatars that represent celebrities
or virtual novel characters by simply inputting text. Compared
with the 3D GANs currently evolving for human body generation
[2, 26, 54], zero-shot text-to-avatar generation does not require
large amounts of richly-annotated human body datasets, extensive
computing resources, or the training of difficult-to-converge 3D
human body generations. Furthermore, it can generate more di-
verse avatars, making it a promising technology with significant
potential for various applications. However, effectively integrating
generalizable large-scale models with parametric human models
to leverage multi-knowledge representations [52] remains an open
problem for improving avatar generation.

The previous methods of generating avatars from text were lim-
ited to 2D representations [12, 13, 29, 47, 49, 53]. This was due to the
lack of 3D datasets. However, recent advancements in differentiable
rendering [14, 20, 22, 25] have made it possible to supervise a 3D
model by using a vision-language model to supervise its rendered
images. This has led to the development of zero-shot text-to-3D
object methods [10, 15, 19, 24, 32, 44, 46]. Despite the progress in
generating common 3D objects, generating 3D avatars still poses
significant challenges. The flexible movements and complex body
structure of 3D avatars make it difficult for these models to generate
avatars that exhibit optimal performance. However, AvatarCLIP
[9] was specifically designed to address these issues. It uses an
implicit neural network to reconstruct a human body prior [16] and
leverages CLIP (Contrastive Language-Image Pretraining) [34], a
vision-language model, to optimize the reconstructed human body
towards the text description. In this approach, CLIP encodes both
the text and the rendered image to embeddings in a multi-modal
feature space, and then minimizes their cosine distance.

Despite significant advancements made by AvatarCLIP in the
zero-shot text-to-avatar task, there are still several limitations that
require attention. 1) A lack of avatar-specific model. Current meth-
ods do not employ specialized models designed for avatars. Instead,
they rely on generic 3D models, which leads to two major issues:
facial distortion and unrealistic clothing, which greatly compromise
the quality of the generated avatars as shown in Figure 1. Facial dis-
tortion arises from a poor combination of these models with human
body priors, resulting in imprecise human body representations

with shapeless faces. Unrealistic clothing is caused by the current
models treating clothing and skin as mere textures on the body
surface, without differentiating between clothing and body models,
which results in a mixed texture and a lack of clothing thickness. 2)
Limited generative power of CLIP. Although CLIP has successfully
bridged the gap between natural language and avatar images, it
has limited generative power as it is not a generative model. It only
calculates an embedding of the overall appearance, which causes
generated avatars to mismatch with the text in terms of details.

To address the first limitation, it is necessary to develop more
sophisticated avatar models that can also effectively separate cloth-
ing and skin textures to simulate realistic clothing. One promising
approach is the use of clothing-decoupled models, such as those
proposed in [4, 7, 11, 50, 56]. However, these models do not use a
complete neural implicit representation, which has been shown to
be the most suitable 3D representation for receiving guidance from
vision-language models [9, 19]. As for the second limitation, one
possible solution is to use diffusion models’ supervision [15, 32]
to optimize the human body model, as diffusion models are pixel-
level generative models. However, due to the lack of ground truth
annotated with clothing segmentation labels, existing clothing-
decoupled models cannot obtain an optimization direction that
effectively distinguishes clothing from skin through current opti-
mization methods.

To tackle these challenges, we present AvatarFusion, a pioneer-
ing method for generating clothing-decoupled 3D avatars from
text prompts using diffusion models as supervision. Notably, to
the best of our knowledge, our approach is the first to combine
zero-shot 3D avatar generation and segmentation. In AvatarFusion,
we present the first clothing-decoupled avatar model of complete
neural implicit representations, along with a novel Dual Volume
Rendering strategy for its rendering. Additionally, we propose a
novel optimization loss called Pixel-Semantics Difference-Sampling
(PS-DS) to optimize the model from diffusion models and separate
the generation of clothing and skin. To elaborate on our proposed
approach, we first utilize an off-the-shelf Signed Distance Func-
tion (SDF) field to create a SDF-based Avatar Model (SAvM) that
accurately captures the intricate details of the human body prior,
SMPL [16]. SAvM is also equipped with a deformation field that
allows for the manipulation of the avatar’s pose during training.
Secondly, we introduce a clothing-decoupled model (CDM) that
uses two SAvMs to represent the skin and clothing separately. Our
proposed Dual Volume Rendering strategy is compatible with tra-
ditional volume rendering and provides a way to jointly render
two implicit neural representations in the same space. Finally, our
proposed Pixel-Semantics Difference-Sampling (PS-DS) aligns the
Differences in Pixel space to the Difference of text Semantics as
a Sampling strategy of a latent diffusion model known as Stable
Diffusion [37]. This allows the clothing model to generate only the
clothing around the avatar’s body without covering the skin.

Prior to our work, evaluation metrics for this field were limited
to user studies, and no benchmark was available. To fill this gap,
we propose a new benchmark called Famous-Character-50 (FC50).
It comprises fifty varied text prompts featuring famous people or
fictional characters of different cultures and genders. Our bench-
mark enables quantitative evaluation by comparing the generated
avatars with the outcomes of mature 2D text-to-image models.

https://doi.org/10.1145/3581783.3612022
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To assess the generated avatar images’ quality, we employ face
recognition distance [8] and Fréchet Inception Distance (FID) score
[40] as evaluation metrics. Our experimental results indicate that
AvatarFusion outperforms baselines in both quantitative and qual-
itative evaluations on our benchmark. Specifically, AvatarFusion
attains a lower face recognition distance of 14.04%, implying that
the generated avatars are more faithful to the given text prompts.
Furthermore, our method significantly enhances the FID score, in-
dicating that AvatarFusion generates more realistic avatars. The
model’s high performance in user studies also suggests that the
generated avatars align better with the human perspective. Addi-
tionally, our avatar-specific model is clothing-decoupled, enabling
us to exchange clothing between different characters.

Our contributions are as follows.

• We propose AvatarFusion, a novel framework for zero-shot
3D avatar generation that is the first to combine zero-shot
clothing segmentation and avatar generation. AvatarFusion
includes a clothing-decoupled neural implicit model, a Dual
Volume Rendering strategy, and a PS-DS optimizationmethod.

• We propose the use of diffusion-based optimization meth-
ods to enhance the visual details of the generated avatars,
specifically by improving the distinction between clothing
and skin.

• We also propose the first benchmark for the field, called
Famous-Character-50 (FC50). Our experiments demonstrate
the effectiveness of our proposed approach in comparison
to state-of-the-art methods.

2 RELATEDWORKS
Large-scale vision-language models. Recently, CLIP [34] has
significantly advanced in bridging the gap between natural lan-
guage and images by providing a multi-modal embedding space
for various downstream tasks such as image generation [35], seg-
mentation [3, 5, 48, 51], classification [34], and captioning [21, 42].
Text-conditioned diffusion models [23, 35, 37, 38] are another break-
through. DALL-E 2 [35] uses CLIP’s embedding space to generate
images of complex text prompts, while Imagen [38] employs a cas-
cade of super-resolution models to improve generation efficiency.
Stable Diffusion [37] takes a different approach by using a low-
resolution latent space to generate images.
Zero-shot text-to-3D-objects generation. Thanks to the recent
development of pre-trained vision-language models, several works
have contributed to generating 3D objects in a zero-shot manner
from text prompts. Text2mesh [19], AvatarCLIP [9], and NeRF-Art
[44] utilize CLIP [34] loss as supervision to optimize mesh and im-
plicit function representations. In addition to CLIP, diffusion models
[35, 37, 38, 55] can also be used for text-based model supervision
[15, 17, 18, 24, 32, 36, 46]. DreamFusion [32] employs Imagen [38]
for Score Distillation Sampling (SDS) to supervise the generation
of NeRF [20] models. Although diffusion-based methods generate
more impressive content, they often fail to converge when generat-
ing human bodies and cannot control the generated results even
when they do. Therefore, using diffusion models to supervise the
generation of 3D avatars remains a challenge.
Clothing-decoupled models. Clothing-body separation was ini-
tially developed for simulating clothing in physics simulations [1,

30, 39, 43]. Recently, clothing-body separation models [4, 7, 11, 56]
have emerged in avatar generation and reconstruction tasks. These
tasks aremore challenging because separating 3D clothing and body
purely from 2D data is difficult and requires extensive pixel-level
annotation of clothing and body data. SMPLicit [4] is a generative
clothing-decoupled model that uses a neural implicit network to
represent clothes outside the SMPL mesh. Neural implicit models
can represent clothing with any topology, thus significantly en-
hancing the expressive power compared with previous complete
mesh-based models. The task AvatarFusion faces is even more chal-
lenging as there is no ground truth.

3 PRELIMINARIES
Human body priors. SMPL (SkinnedMulti-Person Linear) [16] is a
statistical bodymodel that represents the surface of the human body
as a triangulated mesh 𝑀 (𝛽, 𝜃 ) with vertices v𝑖 . The model uses
shape parameters 𝛽 and pose parameters 𝜃 to control the body’s
shape and pose, respectively. To enable deformation of the mesh
based on pose, SMPL follows a linear blending skinning function
for vertex transformations as:

v′𝑖 =
𝐾∑︁
𝑘=1

𝜔𝑘,𝑖𝐺
′
𝑘
(𝜃, J)v𝑖 , (1)

where 𝜔𝑘,𝑖 are the blend weights for the 𝑘-th joint, and G′
𝑘
(𝜃, J) is

the relative transformation matrix of the 𝑘-th joint dependent on
the pose parameter 𝜃 and joint locations J.
Neural implicit surfaces. Neural Implicit Surfaces (NeuS) [45] is
a recently developed method for learning implicit representations
of 3D surfaces from 2D images. The model uses the volume ren-
dering [6, 20], a technique to project a 3D volume onto a 2D image
plane, to train a neural network to reconstruct the 3D surface as
Signed Distance Function (SDF). The volume rendering strategy
estimates the pixel color 𝐶 by shooting a ray p(𝑡) from the camera
and calculating properties of sampled points p(𝑡𝑖 ) on the ray, using
three primary equations:

𝛼𝑖 = 1 − exp(−
∫ 𝑡𝑖+1

𝑡𝑖

𝜌 (𝑡)d𝑡), (2)

𝑇𝑖 =

𝑖−1∏
𝑗=1

(1 − 𝛼 𝑗 ), (3)

𝐶 =

𝑛∑︁
𝑖=1

𝑇𝑖𝛼𝑖c𝑖 . (4)

Here 𝛼𝑖 represents the discrete transparency of each point, which
is calculated as the integral of the density function 𝜌 (𝑡) between
neighbour points. 𝑇𝑖 represents the the accumulated transparency
of all points behind it along the viewing ray. The pixel color 𝐶 is
then calculated based on 𝛼𝑖 , 𝑇𝑖 , and point color c𝑖 .
Diffusion-supervised training. DreamFusion [32] proposes a
method for generating 3D models from text using a pre-trained
diffusion model called Imagen [38] with a denoising function, de-
noted as 𝜖𝜙 (z𝑡 ;𝑦, 𝑡), where z𝑡 represents a noisy image at noise
level 𝑡 , and 𝑦 is the text embedding. The optimization of the neural
implicit model 𝑔 begins by adding noise 𝜖 to the rendered image
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Figure 2: Overview of AvatarFusion. The upper left part shows (a) the SDF-Based Avatar Model (SAvM) which takes a point x as
input, and output its SDF value and color value. The upper right part shows (b) the clothing-decoupled model, which takes
two SAvMs representing skin and clothing, and merge the space to render avatars with clothes. The lower part shows (c) our
diffusion-based optimization methods with PS-DS separating the clothing from skin semantically. For clarity, we omit the
image encoder E in the figure.

x = 𝑔(𝜃 ) at a specified noise level 𝑡 , obtaining z𝑡 . The Score Dis-
tillation Sampling (SDS) technique is then employed to optimize
the model towards the intended text meaning by calculating the
difference between the predicted text-conditioned noise, 𝜖𝜙 (z𝑡 ;𝑦, 𝑡),
and the added noise 𝜖 , as follows:

∇𝜃LSDS (𝜙, x = 𝑔(𝜃 )) ≜ E𝑡,𝜖 [𝜔 (𝑡) (𝜖𝜙 (z𝑡 ;𝑦, 𝑡) − 𝜖) 𝜕x
𝜕𝜃

], (5)

where 𝜔 (𝑡) is a weighting function.

4 METHODOLOGY
4.1 Overview
In this study, we present AvatarFusion, a novel framework designed
to generate photo-realistic avatars with separate clothing for the
zero-shot text-to-avatar task. Figure 2 illustrates the pipeline of
AvatarFusion. Our framework incorporates a Clothing-Decoupled
neural implicit Model (CDM) which consists of two SDF-based
Avatar Models (SAvM), one for skin and the other for clothing. To
optimize the models, we utilize Diffusion-Based Supervisions.

We begin by introducing the SAvM in Section 4.2. The SAvM
extends NeuS [45] by incorporating a deformation field and an
off-the-shelf SDF field generated by an offline SDF generator. The
deformation field transforms points in an observation space to
points in the canonical space. Meanwhile, the SDF field provides a
detailed human body prior, SMPL [16], enabling ourmodel to render

well-formed facial structures and detailed SMPL models before any
optimization, which effectively mitigates facial distortion problems.

In Section 4.3, we provide detailed explanations of CDM. CDM
is our full model that represents the skin and clothing of an avatar
using two SAvMs. These SAvMs can produce skin and clothing
images using SDF-based volume rendering [45]. To render avatars
with clothing, we merge the space points from two neural implicit
representations using Dual Volume Rendering.

In Section 4.4, we describe the process of optimizing the models
using Stable Diffusion, a latent diffusion model [37]. Firstly, we
divide the text description into three prompts: face, skin, and avatar
prompt. The face prompt is used as the text condition of the SDS
method [32] to optimize the facial part of the skin model. For the
body part of the skin model, we use a selected skin color. The skin
and avatar prompts are regarded as two text conditions for Pixel-
Semantic Difference-Sampling (PS-DS) to generate clothes, as the
overall avatar minus the bare skin leaves only the clothes.

4.2 SDF-Based Avatar-Specific Model
NeuS has the ability to produce high-precision surface reconstruc-
tions for static scenes. However, in order to better represent an
avatar, we have extended NeuS to the SAvM by introducing a de-
formation field and an off-the-shelf SDF field.
Deformation field. To create a dynamic avatar, we require a de-
formation field that maps the observation space, where the avatar
takes on arbitrary poses 𝜃 , to a canonical space, where the avatar is
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in a standard pose 𝜃cano. Following the approach of [27, 28, 31, 33],
we align any given point x in the observation space to the near-
est vertex v of SMPL mesh 𝑀 (𝛽, 𝜃 ) based on Euclidean distance,
and assign the blend weights of v, denoted as 𝜔𝑖 , to x. This allows
x to rotate with SMPL joints and correspond to a point xcano in
the canonical space, following Equation 1. The deformation field
equation is then defined as follows:

xcano =

𝐾∑︁
𝑘=1

𝜔𝑘G
′
𝑘
(𝜃, J)x. (6)

Off-the-shelf SDF field. The optimization process begins with
the models representing SMPL prior, as a starting point [9, 19]. To
encode the SMPL prior directly into the model, we use an offline
SDF generator to create a 256×256×256 grid of SDF values that cor-
respond to the SMPL mesh space at its canonical pose𝑀 (𝛽, 𝜃cano).
Any point xcano in the mesh space can be assigned an SDF value
denoted as 𝑓𝑆𝑀𝑃𝐿 (xcano) using bilinear interpolation. The Multi-
Layer Perceptrons (MLPs) of NeuS generate only a residual SDF
value Δ𝑓𝑁𝑒𝑢𝑆 (xcano). This ensures that the model can render highly
detailed SMPL even before any training has been conducted.
Summary Therefore, the SDF value 𝑓 (x) and color c(x) at point x
for volume rendering Equation 4 is

Δ𝑓NeuS (xcano), feat = 𝑀𝐿𝑃𝑠 (xcano), (7)

c(x) = cNeuS (xcano) = 𝑀𝐿𝑃𝑠 (xcano, feat), (8)
𝑓 (x) = 𝑓SMPL (xcano) + Δ𝑓NeuS (xcano). (9)

4.3 Clothing-Decoupled Model
Skin, clothing and joint spaces. Our goal is to create a more
realistic clothing simulation by developing a clothing-decoupled
neural implicit model that represents skin and clothes separately.
To achieve this, we utilize two SAvMs, one for rendering the images
of skin space 𝐼skin and the other for rendering the clothing space
𝐼clothing. However, both SAvMs must be integrated into a joint space
to render the complete image 𝐼char. One direct approach involves
dividing the joint space into an inner space, where only the skin
space points exists, and an outer space, where only the clothing
space points exists, as proposed in [7].

x =

{
xbody, 𝑓body (x) <= 𝛿

xcloth, 𝑓body (x) > 𝛿
, (10)

where 𝛿 is a small positive number.
However, connecting the skin and clothing spaces directly to

form the joint space may result in a biased skin color that differs
from the skin color rendered in the skin space. This is because skin
color is determined by integrating every point’s color along the ray
during volume rendering. When skin space points are neglected
in the outer joint space, their skin color contribution may also be
disregarded, leading to a biased skin color. Therefore, the skin space
points must also exist in the outer joint space to maintain their
distribution.
Dual Volume Rendering. To integrate the two neural implicit
models in the outer joint space, an extended volume rendering tech-
nique called Dual Volume Rendering is proposed. Specifically, we
update the properties of joint space points, 𝛼𝑖 and c𝑖 in Equation 4,
with combined values from both models. To be concise, we provide

the summarized space merging equations below and leave the de-
tailed derivation process in the supplementary material. Please note
that the derivation of the merged 𝛼𝑖 is in line with the definition of
volume rendering [6], while the merged c𝑖 is a linear interpolation
approximation as there is no physical meaning of adding the RGB
values.
Space merging equations. Given the sampled points on a ray,
denoted as X = {x1, x2, . . . , x𝑖 , . . . }, we derive 𝑓body (x𝑖 ), 𝑓cloth (x𝑖 ),
cbody (x𝑖 ), and ccloth (x𝑖 ) from the SAvMs. Then, we calculate𝛼body (x𝑖 )
and 𝛼cloth (x𝑖 ) based on the discretization of Equation 2 (refer to
[45] for more details). Finally, Dual Volume Rendering procedure
can be summarised as:

𝛼𝑖 =


𝛼body (x𝑖 ), 𝑓body (x𝑖 ) <= 𝛿

𝛼body (x𝑖 ) + 𝛼cloth (x𝑖 )
−𝛼body (x𝑖 ) · 𝛼cloth (x𝑖 ), 𝑓body (x𝑖 ) > 𝛿

, (11)

c𝑖 =


cbody (x𝑖 ), 𝑓body (x𝑖 ) <= 𝛿

𝛼body (x𝑖 )
𝛼body (x𝑖 )+𝛼cloth (x𝑖 ) cbody (x𝑖 )
+ 𝛼cloth (x𝑖 )
𝛼body (x𝑖 )+𝛼cloth (x𝑖 ) ccloth (x𝑖 ), 𝑓body (x𝑖 ) > 𝛿

. (12)

Hereafter, we can proceed with the subsequent volume rendering
calculations using Equation 3 and so forth.

4.4 Diffusion-Based Semantic-Decoupled
Optimization

Prompt division. In this sub-section, we present our optimization
methods using Stable Diffusion for generating a complete avatar
with decoupled skin and clothing components. To achieve this, we
generate three prompts: the face promptTface, the skin promptTskin,
and the character prompt Tchar, which correspond to the avatar’s
facial features, skin tone, and overall appearance, respectively.

We use Tface as the text condition for the SDS method [32] to
optimize the facial part of skin model. We use a pre-selected color
to optimize 𝐼body, the body image rendered in the skin space, with
pixel-wise loss Lpixel_rgb. Tskin and Tchar are used to generate the
clothing of avatar indirectly. This is because the diffusion model can
only generate clothing along with skin, and directly applying the
SDS method with a clothing prompt as a condition would result in a
new layer of skin outside the original skin. To address this issue, we
introduce the Pixel-Semantic Difference-Sampling (PS-DS) method.
PS-DS method. This method takes two text prompts as input and
generates semantic differences between them. By using Tskin and
Tchar as input, we obtain clothing as their semantic difference.

The PS-DS method is implemented as shown in Figure 2. First,
we render two images 𝐼skin and 𝐼char and encode 𝐼char to its latent
image E(𝐼char) using Stable Diffusion’s encoder. Then, noise 𝜖 at
level 𝑡 is added to E(𝐼char) to obtain z𝑡 , which serves as a noisy
sample for Stable Diffusion. Next, we predict noise based on Tchar
and Tskin, respectively. The difference between the predicted noises
provides optimizing directions for the clothing model. We compute
these directions using the equation below:

∇𝜃LPS-DS (𝜙, x = 𝑔(𝜃 )) ≜ E𝑡,𝜖 [𝜔 (𝑡) (𝜖𝜙 (z𝑡 ;𝜏 (Tchar), 𝑡)

−𝜖𝜙 (z𝑡 ;𝜏 (Tskin), 𝑡))
𝜕x
𝜕𝜃

],
(13)
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Input (text):
Mrs. Thatcher

Input (text):
Superman

Input (text):
Stephen Curry

Input (text):
Joe Biden

AvatarCLIPLatent-Nerf S-Dreamfusion AvatarFusion (Ours)

Input (text): Stephen Curry Input (text): Joe BidenInput (text): Mrs. Thatcher Input (text): Superman

AvatarFusion
(Ours)

AvatarCLIP

(a) Comparison of Faces

Clothing

(b) Comparison of Whole Avatars

(c) Avatars of AvatarsFusion (Ours)

Clothing

Input (text): Abraham Lincoln Input (text): Chow Yun Fat

Clothing

Input (text): Taylor SwiftInput (text): Leonardo DiCaprio

Clothing

Figure 3: Qulitative Comparison with baselines for face and body generation and more results of AvatarFusion. Latent-NeRF
and Stable-DreamFusion can sometimes fail to generate content or produce distorted bodies. On the other hand, AvatarCLIP
suffers from poor details. In comparison, our method can robustly generate avatars with vivid faces and realistic clothing. More
examples are provided in the supplementary material.

where 𝜏 represents the text encoder of Stable Diffusion. For def-
initions of other variables, please refer to Equation 5. We assign
this result as the gradients to the latent image E(𝐼char − 𝐼skin) and
backpropagate it.

In addition to SDS and PS-DS method, we also use SDF loss to
control the overall shape of the model and the pixel entropy loss to
assist PS-DS method in segmenting the clothing. By calculating the
entropy of the proportion of skin and clothing model in the color of
each ray as a loss function, one side can dominate the overall color,
which can better distinguish whether there is clothing coverage.

5 EXPERIMENTS
5.1 Implementation Details
We represented the SAvMs of the body and clothing using two-layer
MLPs with a hidden size of 128. Our latent diffusion model is the
open-source Stable Diffusion model version 1.5. We trained the

whole avatar in a standing pose as in AvatarCLIP [9]. We trained
the skin model for 25000 iterations and then used PS-DS to train
the clothing model for 25000 iterations with 𝛿 = 1𝑒 − 5, followed
by an additional 25000 iterations with 𝛿 = 1𝑒 − 3. More details are
provided in the supplementary material.

5.2 Benchmark
The evaluation of zero-shot text-to-avatar generation task is chal-
lenging due to the absence of a unified dataset of selected characters
and evaluation metrics beyond user studies. To address this, we
developed a benchmark called Famous-Character-50 (FC50) that
includes 50 descriptions of famous real and fictional characters, and
the corresponding images generated using the Stable Diffusion [37]
checkpoints of version 2.1. FC50 provides a diverse representation
of races and genders while covering a broad range of cultures, as
shown in Figure 4. This diversity guarantees a comprehensive eval-
uation that accurately reflects the diversity of human appearance.
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Figure 4: The constructed dataset of the benchmark.

Table 1: Comparison with baselines and ablation studies. For
all the metrics, the lower (↓), the better.

Model FRD Face-FID Body-FID
Latent-NeRF [18] 0.8956 105.87 114.73
S-DreamFusion [41] (-) (-) 119.59
AvatarCLIP [9] 0.6907 79.08 96.65
Ours 0.5937 71.73 83.21
Full model 0.6007 82.13 92.16
32 * 32 SDF Reso 0.7581 104.69 95.42
64 * 64 SDF Reso 0.6754 87.94 96.85
w/o diffusion 0.7023 96.08 104.32
w/o speartaion 0.6018 84.72 95.98

Evaluation metrics. Since there is no ground truth available for
the zero-shot text-to-avatar task, we propose comparing the simi-
larity between 3D model rendering images and mature 2D image
generation results to evaluate the models. To measure this similar-
ity, we employ a face recognition model [8] to capture and measure
the distance between the generated face and the corresponding face
in the image dataset, which we refer to as the Face Recognition
Distance (FRD). A smaller distance indicates that the generated
avatar is closer to the corresponding face in terms of identity recog-
nition, which suggests that the avatar better captures the character
features described in the text prompt. Additionally, we compare
the FID score between the generated avatars and image dataset,
evaluating the quality of the generated avatars in terms of fidelity
to the ground truth images. We compare the faces (Face-FID) and
the whole body (Body-FID) separately.

5.3 Comparing with Baselines
We compared AvatarFusion with three baseline methods: Dream-
Fusion [32], Latent-NeRF [18], and AvatarCLIP [9]. DreamFusion is
a generative model that converts text to 3D objects using Imagen,
a diffusion model [38]. As we were unable to obtain Imagen, we
used an unofficial implementation called Stable-DreamFusion (S-
DreamFusion) [41], which is based on Stable Diffusion [37]. Latent-
NeRF modifies the generation space of S-DreamFusion from RGB
space to the latent space of Stable Diffusion and uses a loss function
to align the 3D implicit representation to a mesh prior representing
basic shapes. We used SMPL [16] prior for avatar generation in
this method. AvatarCLIP is specifically designed for avatar gener-
ation, and its robustness and better combination with the SMPL

Table 2: Results of user studies from 19 users. All metrics
are measured on a scale of 1 (worst) to 5 (best). AvatarFusion
achieves highest rates on all aspects.

Model Overall Face Texture Text Cons
Latent-NeRF [18] 2.21 1.89 2.47 2.73
S-DreamFusion [41] 3.74 (-) 3.95 2.84
AvatarCLIP [9] 3.89 3.00 4.16 4.58
Ours 4.32 4.68 4.42 4.79

prior make it a strong competitor. For AvatarCLIP, we used the
official text prompt "A 3D rendering of character’s name in Unreal
Engine," while for methods utilizing diffusion models, we used the
text prompt "A full-length photograph of character’s name."
Quantitative comparison. Table 1 shows the evaluation results of
our model against baselines. Our superior performance on all three
evaluation metrics indicates that we are capable of generating more
accurate and visually appealing avatars from textual descriptions.
Specifically, our models achieve a face distance of 0.5937, which is
14.04% higher than the baseline, indicating our generated faces are
more realistic and faithful to the text.
Qualitative comparison. The generation of complex human bod-
ies using diffusion-based methods, such as Latent-NeRF and S-
DreamFusion, is not always successful. S-DreamFusion failed to
generate meaningful content for Mrs. Thatcher and Joe Biden,
while Latent-NeRF initially converged but later lost all content.
We present the best results before this issue occurred. While S-
DreamFusion can generate avatars in some cases, it falls short
in terms of facial and clothing details compared with AvatarFu-
sion. Additionally, it can cause body distortions, such as generating
three arms for Curry or not producing hands for Superman. These
problems of diffusion-based method arise because of the models’
ineffective combination with SMPL prior, which results in rendered
images with weak correlations across different perspectives. Apply-
ing diffusion-based pixel-level supervision to different perspectives
at this stage may lead to convergence failure or distortions.

Both AvatarCLIP and AvatarFusion can robustly generate com-
plete avatars. However, the generic model of AvatarCLIP and the
embedding-level supervision of CLIP cannot distinguish between
clothing and skin, which results in characters with distorted faces,
mixed clothing and skin textures, and clothing lacking thickness.
User studies. To further evaluate the quality of our generated
avatars, we conducted a user study comparing them with baseline
methods. We recruited 19 volunteers and asked them to rate the
methods based on (1) overall quality, (2) facial quality, (3) texture
quality, and (4) consistency with the given text prompt. For each
aspect, we randomly selected 12 generated results and asked the
volunteers to score each example on a scale of 1 (worst) to 5 (best).
The final results are presented in Table 2. Our AvatarFusion ap-
proach achieved the highest rank in all aspects, demonstrating its
effectiveness in mitigating the defects of previous methods.

5.4 Ablation Studies
We conducted ablation studies on a random sample of fifteen char-
acters from FC50 to gain insight into the contributions of each
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(b) Impact of Clothing Decoupling
w/o PS-DS

Mixed Skin&Clothing
Full Model

Separated Clothing
w/o Clothing-Decoupling

Skirt As Texture

Full Model
Realistic Skirt

Clothing Space Clothing Space

(c) Impact of Diffusion-Based Supervision

(a) Impact of SDF field Resolution

CLIP Diffusion

32×32×32 64×64×64 256×256×256 (Full Model)

Input (text): Gal Gadot (Face), the Wonder Woman (Character)

Figure 5: Ablation studies which demonstrate the following
keyfindings: (a)High-resolution SDFfields contribute towell-
formed faces. (b) The semantic separation of clothing from
skin by PS-DS method allows for more realistic skirts than
just texture alone. (c) The inclusion of Diffusion Supervision
contributes to a more complete and detailed clothing.

component to the overall performance. The results of these studies
are presented in Figure 5 and Table 1.
Impact of SDF field resolution.We examined the impact of using
off-the-shelf SDF fields of different resolutions on our framework’s
performance. Our full model used a 2563 SDF grid. Since there was
no noticeable difference from the human perspective when using a
1283 grid, we evaluated the results for SDF grids with resolutions
of 323 and 643. The results showed that when we reduced the
resolution, the avatar model at initial point lacked the necessary
details, which ultimately led to facial distortion in the final output.
Impact of clothing decoupling.We investigated the impact of
clothing decoupling on the results. First, we replaced PS-DS method
with SDS method [32], which resulted in a loss of semantic decou-
pling between the Wonder Woman’s skin and clothing in Figure 5.
Then, we compared the results obtained with and without clothing
decoupling and found that the decoupled model produced more
expressive skirts than just a texture on the legs. Additionally, it
achieved better performance in evaluation metrics. Decoupling
clothing from skin enabled independent optimizing of clothing,
loosening the constraints of the SMPL model, a body prior rather
than a clothing prior.
Impact of diffusion-based supervision. We conducted an ex-
periment to evaluate the impact of diffusion-based supervision by
replacing it with CLIP [34]. In this step, we also removed cloth-
ing decoupling as it relies on diffusion supervision. The results
demonstrated that CLIP-based optimization led to a blending of
skin and clothing textures, whereas diffusion supervision resulted
in complete clothing textures.

(a) Animation
Spider Man

(b) Exchanging Clothes

Lionel
Messi

Christiano
Ronaldo

Steve Jobs

Figure 6: Results of (a) animation and (b) exchanging clothes.

5.5 Extra Abilities
As we align the generated avatars with the SMPL skeleton, they
can be animated with SMPL pose sequences. And as our avatar
is clothing-decoupled, we can exchange the clothes of avatars as
shown in Figure 6.

6 DISCUSSION
Limitations. Similar to AvatarCLIP [9], our method currently can-
not generate a reasonable backside because the vision-language
models are not responsive to the prompt "the back of ...". Conse-
quently, the backside of the avatar may resemble the front.
Ethical issues. The technology of generating realistic and clothing-
decoupled avatars from text may raise concerns regarding ethics,
privacy, and security. It is critical to continue conducting research
and development in an ethical and responsible manner. Please note
that in our avatar generation process, we only generate the inner
model representing skin color and not the specific physique of an
individual. We firmly oppose generating unethical outcomes.

7 CONCLUSIONS
In this study, we introduce AvatarFusion, a novel framework for
zero-shot text-to-avatars generation. Our primary contribution is
a clothing-decoupled neural implicit avatar model that employs a
dual volume rendering strategy and a Pixel-Semantics Difference-
Sampling process to separate the generation of body and clothing.
Our experiments on the first benchmark in this field demonstrate
that our approach surpasses state-of-the-art methods by a signifi-
cant margin. We are the first to generate and segment 3D avatar
models using a pre-trained vision-language model. Future research
may focus on enhancing the backside of avatars or fitting loose
clothing.
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A SUPPLEMENTARY MATERIAL
A.1 Details of Methodology
A.1.1 Details of Dual Volume Rendering. Section 4.3 presents the
equations used tomerge the skin and clothing spaces in the clothing-
decoupled model. In this section, we provide the derivation of these
equations.

Initially, to compute the color for each pixel, we shoot a ray p(𝑡)
and sample points on it, denoted as {x0, x1, . . . , x𝑖 , . . .}, where x𝑖 =
p(𝑡𝑖 ). Next, we compute the SDF values of each point from the skin
and clothing models, represented as 𝑓body (x𝑖 ), 𝑓cloth (x𝑖 ), and the
corresponding RGB color vectors cbody (x𝑖 ), ccloth (x𝑖 ), respectively.
Subsequently, we compute the discrete opacity values based on
the SDF-based volume rendering technique [45], which can be
expressed as:

𝛼body (x𝑖 ) = max{
Φ𝑠 (𝑓body (x𝑖 )) − Φ𝑠 (𝑓body (x𝑖+1))

Φ𝑠 (𝑓body (x𝑖 ))
, 0}, (14)

𝛼cloth (x𝑖 ) = max{Φ𝑠 (𝑓cloth (x𝑖 )) − Φ𝑠 (𝑓cloth (x𝑖+1))
Φ𝑠 (𝑓cloth (x𝑖 ))

, 0}, (15)

where Φ𝑠 (𝑥) = (1 + 𝑒−𝑠𝑥 )−1. This equation is a discretization of
𝛼𝑖 = 1 − exp(−

∫ 𝑡𝑖+1
𝑡𝑖

𝜌 (𝑡)d𝑡).
For the inner space, where only skin space points are present,

we use the characteristics obtained from the skin model as the
properties of the joint space points. This can be denoted as:

𝛼𝑖 = 𝛼body (x𝑖 ), 𝑓body (x𝑖 ) <= 𝛿, (16)

c𝑖 = cbody (x𝑖 ), 𝑓body (x𝑖 ) <= 𝛿, (17)
where the inner space refers to the space where the distance from
the skin is less than 𝛿 .

For the outer space, where both skin space points and clothing
space points exist, we need to merge the points from both spaces.
To accomplish this, we begin by exploring the equations of volume
rendering before discretization. It is worth noting that the opaque
density 𝜌 is proportional to the gas density in the primitive physical
equations of volume rendering, as reported in [6]. Based on this
relationship, we can approximate that the volume density 𝜌 of the
volume rendering functions can be added in the same way as gas
densities are added. This can be expressed as:

𝜌 (𝑡) = 𝜌body (𝑡) + 𝜌cloth (𝑡), (18)
where 𝜌body (𝑡) and 𝜌cloth (𝑡) represent the densities of the skin and
clothing spaces, respectively, at time 𝑡 on the emitted ray. Then,
the discrete opacity value should be calculated as follow:

𝛼𝑖 =1 − exp(−
∫ 𝑡𝑖+1

𝑡𝑖

𝜌 (𝑡)d𝑡)

=1 − exp(−
∫ 𝑡𝑖+1

𝑡𝑖

(𝜌body (𝑡) + 𝜌cloth (𝑡))d𝑡)

=(1 − exp(−
∫ 𝑡𝑖+1

𝑡𝑖

𝜌body (𝑡)d𝑡)) + (1 − exp(−
∫ 𝑡𝑖+1

𝑡𝑖

𝜌cloth (𝑡)d𝑡))

− (1 − exp(−
∫ 𝑡𝑖+1

𝑡𝑖

𝜌body (𝑡)d𝑡)) · (1 − exp(−
∫ 𝑡𝑖+1

𝑡𝑖

𝜌cloth (𝑡)d𝑡))

=𝛼body (x𝑖 ) + 𝛼cloth (x𝑖 ) − 𝛼body (x𝑖 ) · 𝛼cloth (x𝑖 ), 𝑓body (x𝑖 ) > 𝛿.

(19)

For the color item c𝑖 , because there is no physical meaning of
adding the RGB values, we make a simple approximation that

c𝑖 =
𝛼body (x𝑖 )

𝛼body (x𝑖 ) + 𝛼cloth (x𝑖 )
cbody (x𝑖 ) +

𝛼cloth (x𝑖 )
𝛼body (x𝑖 ) + 𝛼cloth (x𝑖 )

·ccloth (x𝑖 ), 𝑓body (x𝑖 ) > 𝛿.

(20)

A.1.2 Details of Diffusion-Based Semantic-Decoupled Optimization.
Section 4.4 provides a comprehensive overview of our optimization
methods, with a particular emphasis on the proposed PS-DSmethod.
This section delves into the specifics of additional losses used in
our framework.

To optimize the skin model, we utilize the SDS method [32, 41]
alongwith a binary cross-entropymask lossLmask, which penalizes
the difference between the silhouettes of the rendered avatar and
the SMPL [16] mesh. The total loss is formulated as:

Lskin = 𝜆1LSDS + 𝜆2Lmask, (21)

where 𝜆1 and 𝜆2 are hyperparameters, andLSDS is the loss obtained
from the SDS method.

For optimizing the clothing model, we employ the PS-DSmethod,
along with an SDF loss and a pixel entropy loss. The SDF loss is
used to control the clothing SDF values of each point close to its
skin (body) SDF values and is formulated as:

LSDF = LMSE (𝑓cloth (x𝑖 ), 𝑓body (x𝑖 )), (22)

where LMSE is the mean squared error loss function, 𝑓cloth (x𝑖 )
and 𝑓body (x𝑖 ) are the SDF values of the clothing and skin models,
respectively. Here we fix the parameters of the skin model, making
𝑓body (x𝑖 ) a detached value.

To further improve our clothing model, we introduce the pixel
entropy loss that considers the proportion of pixel colors from the
skin and clothing models. The purpose of this loss is to ensure
that one component dominates the pixel color, which allows us to
control the thickness of the clothing.

To incorporate the entropy loss into our approach, we begin by
computing the contributions of the skin model, denoted as 𝑝body,
and the clothingmodel, denoted as 𝑝cloth, to each pixel color. Specifi-
cally, in Dual Volume Rendering, we update the𝛼𝑖 and c𝑖 parameters
of the volume rendering equation 𝐶 =

∑𝑛
𝑖=1𝑇𝑖𝛼𝑖c𝑖 using the merge

space properties. This allows us to separate the contributions of
the two models as follows:

𝑇𝑖𝛼𝑖c𝑖 = 𝑤body,𝑖cbody (x𝑖 ) +𝑤cloth,𝑖ccloth (x𝑖 ), (23)

where 𝑤body,𝑖 and 𝑤cloth,𝑖 represent the calculated color weights.
Subsequently, we can derive 𝑝body and 𝑝cloth as follows:

𝑝body =

∑𝑛
𝑖=1𝑤body,𝑖∑𝑛

𝑖=1𝑤body,𝑖 +
∑𝑛
𝑖=1𝑤cloth,𝑖

, (24)

𝑝cloth =

∑𝑛
𝑖=1𝑤cloth,𝑖∑𝑛

𝑖=1𝑤body,𝑖 +
∑𝑛
𝑖=1𝑤cloth,𝑖

. (25)

After obtaining the contributions, we can compute the entropy of
these proportions using the following equation:

Lentropy = −𝑝bodylog(𝑝body) − 𝑝clothlog(𝑝cloth) . (26)
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(a) Comparison of Faces

(b) Comparison of Whole Avatars

Figure 7: Comparison with Baselines.
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Figure 8: More Results of AvatarFusion.

The total loss for optimizing the clothing model is given by:

Lclothing = 𝜆3LPS-DS + 𝜆4LSDF + 𝜆5Lentropy, (27)

where 𝜆3, 𝜆4, and 𝜆5 are hyperparameters, and LPS-DS is the loss
obtained from the PS-DS method.

A.2 Implementation Details
For volume rendering during training, we sample 32 points on
each ray and set the scaling factor in Φ𝑠 , to a fixed value of 𝑠 =

𝑒7. This fixed value ensures that the residual SDF value does not
dominate the overall proportion. For the skin model optimization,
we set the hyperparameters 𝜆1 = 100 and 𝜆2 = 800 to balance
the contributions of the SDS loss and the mask loss. We optimize
the skin model for a total of 25000 iterations. To update the model
parameters, we use a learning rate of 1𝑒 − 4. Subsequently, we focus
on optimizing the clothing model. We set the hyperparameters 𝜆3 =
100, 𝜆4 = 300, 𝜆5 = 0, and 𝛿 = 1𝑒 − 4. This optimization process for
the clothing model also runs for 25000 iterations. The learning rate

for this stage is set to 5𝑒−4. To further refine the generated clothing
and filter out any noise, we perform an additional optimization
stage. We set the hyperparameters as 𝜆3 = 100, 𝜆4 = 300, 𝜆5 = 5000,
and 𝛿 = 2𝑒−3. The purpose of this stage is to facilitate the separation
of clothing from body. The learning rate for this stage is set to 5𝑒−4.
Similar to the previous stages, we conduct this optimization for
25000 iterations. Our model training is carried out on an NVIDIA
Tesla V100 32GB GPU.

A.3 More Results
We present additional comparison results with baselines in Figure
7, detailed results of AvatarFusion in Figure 8. Due to page limi-
tations, we have provided additional results on the project page
and an internet image repository. We present more ablation results
on https://postimg.cc/vDxRTnpj and https://postimg.cc/zyB5wFpk.
For further comparison, we include results with Stable Diffusion 2D
on https://postimg.cc/rRqpKXWj and backside comparison results
on https://postimg.cc/c6HyVFSq.

https://postimg.cc/vDxRTnpj
https://postimg.cc/zyB5wFpk
https://postimg.cc/rRqpKXWj
https://postimg.cc/c6HyVFSq
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