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ABSTRACT
Dance and music are two highly correlated artistic forms. Synthe-
sizing dance motions has attracted much attention recently. Most
previous works conduct music-to-dance synthesis via directly mu-
sic to human skeleton keypointsmapping.Meanwhile, human chore-
ographers design dance motions from music in a two-stage man-
ner: they firstly devise multiple choreographic dance units (CAUs),
each with a series of dance motions, and then arrange the CAU se-
quence according to the rhythm, melody and emotion of the music.
Inspired by these, we systematically study such two-stage choreog-
raphy approach and construct a dataset to incorporate such chore-
ography knowledge. Based on the constructed dataset, we design a
two-stage music-to-dance synthesis framework ChoreoNet to im-
itate human choreography procedure. Our framework firstly de-
vises a CAU predictionmodel to learn the mapping relationship be-
tween music and CAU sequences. Afterwards, we devise a spatial-
temporal inpainting model to convert the CAU sequence into con-
tinuous dance motions. Experimental results demonstrate that the
proposedChoreoNet outperforms baselinemethods (0.622 in terms
of CAU BLEU score and 1.59 in terms of user study score).
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1 INTRODUCTION
A famous choreographer namedMartha Graham once said, ’Dance
is the hidden language of the soul’. As an artistic form with a long
history, dance is an important medium for people to express their
feelings. Conventionally, dance is always accompanied by music.
Dancers start to dance when the musical atmosphere is going up
at the beginning, perform different dance actions according to the
rhythm, melody and emotion of music clips, and take a bow at
the end.The complicated mapping relationship between dance and
music has prompted researchers to investigate dance-to-music syn-
thesis automatically.

Several previous research efforts have shown the rationality of
music-to-dance synthesis [5, 19–21, 30]. Earlyworks conductmusic-
to-dance synthesis via solving a similarity-based retrieval prob-
lem [5, 21], which shows limited capacity, while recent researches [19,
20, 30] leverage the deep learning methods to automatically learn
the mapping between music and dance. Usually, prior methods
solve music-to-dance synthesis directly by mapping music to hu-
man skeleton keypoints. On account of the highly redundant and
noisy nature of skeleton keypoints, the frame by frame keypoints
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Figure 1: Human choreography procedure: firstly recollect
CAUs and then arrange CAUs according to the rhythm,
melody and emotion of the music.

prediction can hardly capture the coherent structure of music and
dance, resulting in limited synthesis quality.

To address this issue, we propose to fuse human choreography
knowledge into themusic-to-dance synthesis framework. In chore-
ography knowledge, dance actions are composed of multiple indi-
visible units. We defined such indivisible unit as choreographic ac-
tion unit (CAU). A CAU refers to a clip of humanmotions that lasts
for several musical beats and acts as an undividable unit in chore-
ography. During the choreography procedure shown in Figure 1,
human choreographers usually devise dance actions in a hierar-
chical manner, they often recollect CAUs they have seen or used
before and arrange CAUs according to the rhythm, melody and
emotion of the music to formulate a piece of dance.

Pondering over such characteristics of choreography, we pro-
pose the ChoreoNet, a music-to-dance framework that imitates
the hierarchical choreographic procedure of human beings. Our
ChoreoNet has the following two characteristics: (1) The Chore-
oNet firstly applies a CAU prediction model to predict the CAU
sequence from musical features. Compared with the dance motion
prediction in prior works (predict tens of thousands of frames per
music), the prediction of CAU sequence (predict 40~80 CAUs per
music) on the one hand prevents the neural network model from
learning trival motion details, on the other hand lessens the bur-
den of predicting overlong sequences. (2)The ChoreoNet leverages
a spatial-temporal inpainting model to convert the CAU sequence
into continuous dance motions. Since that there always exists mo-
tion gaps between adjacent CAU pairs in the CAU sequence, the
spatial-temporal inpaintingmodel generates natural transitions be-
tween these CAU pairs. The overall implementation of ChoreoNet
is two-stage, during each stage, the correspondingmodel is trained
separately.

To evaluate the effectiveness of the ChoreoNet framework, we
construct a music-to-dance dataset with expert choreographic an-
notations. Specifically, we collect 164 CAUs from 4 different dance

types (Cha Cha, Waltz, Rumba and Tango) and record 3D motions
of each CAU.Then, we collect 62 dancemusic pieces and invite pro-
fessional choreographers to annotate the CAU sequence of each
music. Totally, we have 94 minutes of music with such annotations.
Then we perform quantitative and qualitative experiments on our
dataset. Experiments show that compared to baseline methods, our
method can generate structured dances with a long duration that
match better with the input music and more natural transitions be-
tween adjacent dance motions. Specifically, compared to baseline
methods, our framework generates CAU sequences with higher
BLEU score [24]. Our motion generation model also generates a
motion transition closer to groundtruth. The dance animation gen-
erated by our framework also scores higher in the user study.

To summarize, our contributions are as two-fold:
• We propose to formalize the human choreography knowl-
edge by defining CAU and introduce it into music-to-dance
synthesis.
• We propose a two-stage framework ChoreoNet to imple-
ment themusic-CAU-skeletonmapping. Experiments demon-
strate the effectiveness of our method.

2 RELATEDWORK
The previous works related to our ChoreoNet are described in two
aspects: music to dance synthesis and human motion generation.

2.1 Music to Dance Synthesis
Several researches have focused onmusic to dance synthesis. Early
works usually treat this problem as a mechanical template match-
ing problem [5, 21, 28]. Cardle et al. [5] modified dance motion
according to musical features, while Shiratori et al. [28] and Lee et
al. [21] manually defined muscial features and generate dance mo-
tions according tomusical similarity.These templatematchingmeth-
ods have limited capacity on generating natural and creative dance
motions. Later, researchers start to address the dance-to-motions
synthesis problem with deep learning techniques [7, 20, 27, 30–33].
Crnkovic-Friis et al. [7] firstly employ the deep learning methods
to generate dance motions, they devise a Chor-RNN framework to
predict dance motion from raw motion capture data. Then, Tang et
al. [30] designed a LSTM-autoencoder to generate 3D dance mo-
tion. Previous research [27] also proposed to improve the natural-
ness of dance motion through perceptual loss [16]. However, the
redundant and noisy motion keypoints still limit the quality of syn-
thesized dance. Yalta et al. [31] has proposed to solve such issue
through weakly supervised learning, whereas, the lack of human
choreography experience still makes the generation quality less
appealing.

2.2 Human Motion Generation
Humanmotion generation aims to generate natural humanmotion
conditioned on existing motion capture data and plays a key role
in music-to-dance synthesis. However, the highly dynamic, non-
linear and complex nature of human motion makes this task chal-
lenging. Early researchers address this problemwith concatenation-
basedmethod [2], hiddenMarkovmodels [29] and random forests [22].
Then,with the development of deep learning techniques, researchers
applied deep learning techniques [1, 9, 10, 13, 15, 23, 26] to solve



motion generation problems. Ghosh el al. [10] and Fragkiadaki et
al. [9] focused on RNN-based models with Euler angle error terms,
utilizing the auto-regressive nature of humanmotion. Later, Pavllo
et al. [26] addressed the impact of joint angle representation and
showed the advantage of quaternion-based representation over Eu-
ler angle. Gui et al. [12] combined CNN-basedmodel with adversar-
ial training, and achieved better short-term generation quality over
previous works. Ruiz et al. [13] formulated human motion genera-
tion as a spatial-temporal inpainting problem and designed a GAN
framework to generate large chunks of missing data. In this work,
we devise a similar spatial-temporal inpainting model to generate
natural dance motion transitions between adjacent CAUs.

3 PROBLEM FORMULATION
Previous researches [7, 20, 27, 30–33] have formulated the music-
to-dance synthesis as amusic-to-keypoint mapping problem. How-
ever, directly predicting human skeleton keypoints raises a series
of difficulties. On the one hand, the human skeleton keypoints
are usually noisy and redundant, directly mapping music to these
noisy keypoints would cause unstable synthesis results. On the
other hand, each piece of music is usually accompanied by thou-
sands of motion frames, predicting such an overlong sequence is
much too challenging for current sequence model.

To address these issues, in this paper, we propose a two-stage
music-to-dance synthesis formulation referring to human chore-
ography knowledge. Conventionally, dance motions are composed
of multiple indivisible units. We define such an indivisible units as
choreographic action unit (CAU), details of CAUwill be illustrated
in section 4. During the human choreography procedure, chore-
ographers seldomly improvise dance actions, instead they create
dance motion in a two-stage manner: (1) choreographic action unit
(CAU) design and (2) CAU sequence arrangement. In the first stage,
human choreographers often recollect CAUs they have seen or
used before.Then in the second stage, choreographers arrangeCAUs
to better fit the rhythm, melody and emotion of a given piece of
music.

With the observation of such hierarchical choreography proce-
dure, we propose to formulate the music-to-dance synthesis pro-
cedure as a two-stage framework. Our framework takes music X
as input to generates human skeleton keypoints sequences C,C ∈
R𝑁×𝑃 , where 𝑁 is the number of motion frames, and 𝑃 is the num-
ber of keypoints. The two stages are formally illustrated as follows:

CAUChoreography Stage. In this stage, given input musicX,
we aim to generate the corresponding CAU sequence {𝑦1, . . . , 𝑦𝑛},
𝑦𝑖 ∈ Y, where Y is the overall CAU set.

MotionGeneration Stage.Having obtained the CAU sequence
{𝑦1, . . . , 𝑦𝑛}, in this stage, we aim to generate the keypoints se-
quence C. In this stage, although we have known the keypoints
sequenceC𝑖 of particular CAU 𝑦𝑖 , the transition between adjacent
CAUs is unknown. Generating smooth and natural transition be-
tween adjacent CAUs is the main problem in this stage.

4 CHOREOGRAPHIC ACTION UNIT
DEFINITION

CAU is short for choreographic action unit. One CAU refers to a
clip of human motions that lasts for several musical beats and acts

Figure 2: An example of CAUs in an 8 beat motion segment.

as an undividable unit in choreography. Human choreographers
recollect CAUs they have seen or used before and arrange them
to formulate new dances. We ask professional dancers to design
CAUs and record their performance of each CAUwith motion cap-
ture devices. In this work, we denote a CAU as 𝑦, 𝑦 corresponds to
𝑙𝑒𝑛(𝑦) musical beats and C𝑦 is the corresponding motion capture
data performed by professional dancers.

Figure 2 shows the procedure of performing CAUs from a mo-
tion segment that lasts for 8 musical beats. At beat 1, the dancer
pivots on the left foot and conducts a quarter turn. At beat 2, the
dancer checks forward and spread arms. Afterwards, the dancer
moves backward and turn to the original position at beat 3 and 4.
Because the dance motions in the first 4 beats make up a whole
action unit and can not be divided into smaller units in choreogra-
phy, it is recognized as a CAU named the Left New Yorkers. After
the Left New Yorkers, the dancer performs the Right New Yorkers in
the last 4 beats of this motion segment. The dance motions in the
last 4 beats are also recognized as a CAU. So totally we have two
CAUs from this motion segment: the Left New Yorkers CAU and
the Right New Yorkers CAU.

5 METHODOLOGY
Following the formulation proposed in section 3, we propose a
two-stage framework ChoreoNet, as shown in Figure 3. In the first
stage, we generate appropriate choreographic action unit (CAU)
sequences from musical features with an encoder-decoder model.
Based on the predicted CAU sequence, in the second stage, we
leverage a spatial-temporal inpainting model to convert CAU se-
quences to dance motions (human skeleton keypoint coordinates).
In the next two subsections, we will introduce the CAU prediction
model and the motion generation model respectively.

5.1 CAU Prediction Model
In the first stage of ChoreoNet, we design our CAU prediction
model to predict CAU sequence from the inputmusic. As explained
above, CAUs should match with music clips and adjacent CAUs, so
our CAU prediction model needs to consider both musical context
and CAU context when deciding the next appropriate CAU. In or-
der to model musical context and CAU context simultaneously, we
adopt an encoder-decoder model as the CAU prediction model. In
this model, we first encode musical context with a temporal con-
volution network, then we feed the encoded musical features to
the decoder model. Our decoder model takes musical features and
the CAU history as input and outputs the next CAU. To model the
time dependency, we apply gated recurrent unit (GRU) [6] as our
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Figure 3: The pipeline of the ChoreoNet. In CAU choreography stage, firstly we extract the deep chroma spectrum, beat and
onset of input music. We concatenate the extracted features to formulate acoustic features. Then the local musical encoder
computes the encoded musical features m𝑡 in a slide window scheme. The GRU decoder combines m𝑡 and CAU history to
predict the next CAU 𝑦𝑡 . In motion generation stage, the motion generation model recovers motion data from CAU sequences.
Details of the motion generation model would be illustrated in Figure 4. ⊕ denotes the concatenation operator.

decoder model. The procedure of CAU prediction is shown in Fig-
ure 3. Next, we’ll explain each part of the CAU prediction model
in detail.

For the encoder of the CAU predictionmodel, we leverage a tem-
poral CNN to encode music frames. We propose to design the en-
coder as a local music encoder (encode a local clip of music) rather
than a global encoder (encode the whole input music). This is be-
cause the CAU sequence is much sparser than music frames. One
piece of music is usually coupled with only dozens of CAUs but
has thousands of music frames. The imbalance between CAUs and
music frames causes difficulty in training a global musicial encoder
between the encoder needs much more capacity than the decoder
and is hard to converge. Afterwards, we adopt the following three
musical features as the input of the encoder: (1) deep chroma spec-
trum [18] (2) beat [4] and (3) onset [8]. We respectively denote
chroma spectrum as X𝑐 , beat as X𝑏 and onset as X𝑠 . At time 𝑡 ,
the encoder applies temporal convolution on raw musical features
within a fixed-length time window [𝑡 −𝑤, 𝑡 +𝑤]:

m𝑡 = 𝑒𝑛𝑐𝑜𝑑𝑒 (X𝑐
[𝑡−𝑤,𝑡+𝑤 ] ,X

𝑏
[𝑡−𝑤,𝑡+𝑤 ] ,X

𝑠
[𝑡−𝑤,𝑡+𝑤 ] ), (1)

wherem𝑡 represents the encoded musical feature at time 𝑡 .
Having obtained the encodedmusical featurem𝑡 , we nowmodel

the CAU generation process of the decoder as a probability distri-
bution conditioned on musical context and CAU context. Given
the CAU history 𝑦1, . . . , 𝑦𝑡−1 and the encoded musical featurem𝑡 ,
the distribution of next CAU 𝑦𝑡 at time 𝑡 is described as:

𝑝 (𝑦𝑡 ) = 𝑝 (𝑦𝑡 |𝑦1, . . . , 𝑦𝑡−1,m𝑡 ) . (2)

We model the conditional distribution with a GRU, as shown in
Figure 3. 𝑦𝑡−1 andm𝑡 are fused with an MLP before feeding to the
GRU.m𝑡 represents the musical context, while𝑦𝑡−1 and the GRU’s
hidden state contains the information of CAU history. In this way,
our model has access to both musical context and CAU context.

Combining the two parts of the CAUpredictionmodel, we adopt
a sliding-window scheme to generate a CAU sequence from the
input music: (1) raw musical features within the time window [𝑡 −
𝑤, 𝑡 + 𝑤] is fed to the encoder and we get the encoded musical
featurem𝑡 , (2) last predicted CAU𝑦𝑝 andm𝑡 are fed to the decoder

to generate 𝑦𝑡 , (3) 𝑡 is updated by 𝑡 ← 𝑡 + 𝑙𝑒𝑛(𝑦𝑡 ). 𝑡 is initially set
to 0 and the whole generation process is repeated until an end
annotation is generated by the decoder or we meets the end of the
input music. Algorithm 1 shows the whole procedure of the CAU
generation.

Algorithm 1 CAU Generation
1: 𝑡 ← 0
2: Y𝑔𝑒𝑛 = []
3: 𝑦𝑝 = 𝑆𝑡𝑎𝑟𝑡𝑂 𝑓 𝐷𝑎𝑛𝑐𝑒
4: while 𝑦𝑝 ≠ 𝐸𝑛𝑑𝑂𝑓 𝐷𝑎𝑛𝑐𝑒 AND the music is not ended do
5: m𝑡 = 𝑒𝑛𝑐𝑜𝑑𝑒 (X𝑐

[𝑡−𝑤,𝑡+𝑤 ] ,X
𝑏
[𝑡−𝑤,𝑡+𝑤 ] ,X

𝑠
[𝑡−𝑤,𝑡+𝑤 ] )

6: 𝑦 = 𝑑𝑒𝑐𝑜𝑑𝑒 (m𝑡 , 𝑦𝑝 )
7: Add 𝑦 to Y𝑔𝑒𝑛

8: 𝑦𝑝 ← 𝑦
9: 𝑡 ← 𝑡 + 𝑙𝑒𝑛(𝑦)

return Y𝑔𝑒𝑛

Having obtained the predicted distribution 𝑝 (𝑦𝑡 ) at each step,
we train the CAUpredictionmodel bymaximizing the log-likelihood
of the expert annotations in the dataset. Given expert annotation
𝑦
𝑝
𝑡 at time 𝑡 , we minimize the negative log-likelihood loss:

L𝑛𝑙𝑙 = −
𝑡=𝑁∑
𝑡=1

𝑙𝑜𝑔(𝑝 (𝑦𝑡 = 𝑦
𝑝
𝑡 )) . (3)

5.2 Motion Generation Model
Having obtained the CAU sequence generated from the input mu-
sic, we convert the CAU sequence to dance motions. Here, dance
motions refer to human skeleton coordinates that can be directly
used to drive humanoid animations. For each CAU 𝑦𝑖 , we collect a
clip of motion capture data C𝑖 = {𝐶1

𝑖 , . . . ,𝐶
𝑁𝑖
𝑖 } performed by pro-

fessional dancers, C𝑖 consists of 𝑁𝑖 frames and each pose frame
is denoted as 𝐶 𝑗

𝑖 . Each frame 𝐶 𝑗
𝑖 is made up of two parts: (1) the

rotation of each joint related to its parent joint, (2) the translation
and rotation of the root point (the hip) related to the world coor-
dinate. We adopt quaternion-based joint rotation representation
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Figure 4:Themotion generationmodel. We generate human
joint rotation and root point respectively.The frame encoder
firstly projects each frame into the latent vector space.Then
the U-Net inpaints the transition gap. Finally, the frame de-
coder projects each frame back into the original parameter
space. Note that themodels of the two branches do not share
parameters.

according to Pavllo et al. [26]. Thus 𝐶 𝑗
𝑖 consists of 𝑃 = 𝑃𝑟 + 𝑃 𝑗

parameters, where 𝑃𝑟 represents the number of root point param-
eters while 𝑃 𝑗 represents the number of joint rotation parameters.
The motion generation problem is formulated as follows: given
{C1, . . . ,C𝑛},C𝑖 ∈ R𝑁𝑖×𝑃 , we aim to generate C ∈ R𝑁×𝑃 , 𝑁 =∑𝑛
𝑖=1 𝑁𝑖 .
For each clip of motion capture data, a large part of C𝑖 can be

directly used to drive humanoid animation. However, the motion
transition between adjacent CAUs needs to be natural and smooth.
To address this issue, we devise a motion generation model to in-
paint dance motions. Before feeding motion capture data to our
model, we preprocess C𝑖 in two steps: (1) align the root points of
adjacent CAUs to avoid sudden change of root position and root
rotation, (2) align kinematic beats (the beats of dance motions)
with musical beats. After these steps, {C1, . . . ,C𝑛} is converted
to C̃ = {C̃1, . . . , C̃𝑛}. Afterwards, we propose to inpaint C̃ to
generate natural and smooth motion transition between adjacent
CAUs. One simple solution could be linear blending. However, lin-
ear blending generates unatural transition when there’s huge gap
between adjacent CAUs. The reason behind is that human motion
is hightly complicated and non-linear in nature. There exists sud-
den acceleration, deceleration and body turns in dance motions. To
address this issue, we design a spatial-temporal inpainting model
shown in Figure 4 inspired by Ruiz et al. [13].

The general idea of spatial-temporal inpainting is similar to im-
age inpainting. Given two clips of motion capture data C̃𝑡−1, C̃𝑡 ,
themodel generatesmotion transition and its contexts: {Ĉ𝑡−1,T𝑡−1∼𝑡 , Ĉ𝑡 }.
T𝑡−1∼𝑡 is the generated motion transition, while Ĉ𝑡−1 and Ĉ𝑡 are
predicted contexts. Usually, Ĉ𝑡−1 and Ĉ𝑡 are a slightly modified
version of C̃𝑡−1 and C̃𝑡 . After generating transition for each pair
of adjacent CAUs, we get C by concatenating Ĉ𝑖 and R𝑖 .

Our spatial-temporal inpainting model is made up of two sub-
models: (1) human joint rotation inpainting model and (2) root
point inpainting model. The two sub-models share the same struc-
ture but with different parameters. The workflow of our model
is shown in Figure 4. The human joint rotation inpainting model
takes only the joint rotation parameters as input, denoted as C̃𝐽

𝑡−1
and C̃𝐽

𝑡 in Figure 4. We first concatenate these two matrices and
mask out the transition window between the twomotion segments
by setting parameterswithin thiswindow to zeros.Thenwe projects
each frame of the motion segment to a latent vector space R𝑀
through a frame encoder Φ𝑒 . After that, a 2D U-Net Φ𝑢 is applied
to inpaint the masked matrix. At last, a frame decoder Φ𝑑 projects
each frame of the inpainted matrix from R𝑀 to R𝐽 , where 𝐽 is the
number of joint rotation parameters. The output of Φ𝑑 consists of
Ĉ𝐽
𝑡−1, T

𝐽
𝑡−1∼𝑡 and Ĉ𝐽

𝑡 . Similarly, the root point inpainting model
takes the rotation and the velocity of the root point as input, de-
noted as C̃𝑅

𝑡−1 and C̃𝑅
𝑡 . The workflow of the root point inpainting

model is the same as that of the joint rotation inpainting model.
Ĉ𝑡−1, T𝑡−1∼𝑡 and Ĉ𝑡 are the concatenation of the outputs from
the human joint inpainting model and root inpainting model.

Note that there are two characteristics in the design of our mo-
tion generation model. First, we adopt two sub-models for human
joint rotation inpainting and root point inpainting respectively rather
than a single model.This is because joint rotation and root velocity
are of two different parameter spaces, it’s hard for one inpainting
model to operate on two parameter spaces. Second, we project each
frame of motion to a larger space of dimension 𝑀 before feeding
the frame into the 2D-UNet. That’s because 2D-UNet would con-
duct 2D convolution on the input matrix, while the motion frame
matrix C̃𝑖 , different from the traditional image matrix, is contin-
uous on the time dimension but not on the motion parameter di-
mension. Thus we cannot directly perform 2D convolution on the
frame matrix. To address this issue, we leverages a frame encoder
Φ𝑒 to projects each frame to a motion embedding space, so as to
guarantee the continuation property in the embedding space. Ex-
tensive experiments verify the effectiveness of the two designs.

During training, we adopt themotion capture data as groundtruth.
Each time, we randomly clip two consecutive clips of motion cap-
ture data denoted as {C1,C2},𝐶𝑖 ∈ R𝑁𝑖×𝑃 .Thenwe feed {C1,C2}
to the motion generation model, the human joint rotation inpaint-
ing model outputs Ĉ𝐽 = 𝑐𝑜𝑛𝑐𝑎𝑡 (Ĉ𝐽

1,T
𝐽
1∼2, Ĉ

𝐽
2) ∈ R

(𝑁1+𝑁2)×𝑃 𝑗 ,
the root point inpaintingmodel outputs Ĉ𝑅 = 𝑐𝑜𝑛𝑐𝑎𝑡 (Ĉ𝑅

1 ,T
𝑅
1∼2, Ĉ

𝑅
2 ) ∈

R(𝑁1+𝑁2)×𝑃𝑟 . Afterwards, we minimize the distance between the
outputs and the groundtruthC𝑔𝑛𝑑 = 𝑐𝑜𝑛𝑐𝑎𝑡 (C1,C2) ∈ R(𝑁1+𝑁2)×𝑃 .
The two sub-models define two different distance function (i.e loss
function) respectively: (1) joint rotation loss L 𝑗𝑜𝑖𝑛𝑡 , (2) root point
lossL𝑟𝑜𝑜𝑡 . For joint rotation loss, we adopt geodesic loss proposed



by Gui et al. [12]. Given two rotation matrices R and R̂, the geo-
desic distance is defined using the logarithm map in SO(3):

𝑑𝑔𝑒𝑜 (R, R̂) = | |𝑙𝑜𝑔(RR̂𝑇 ) | |2 . (4)
Summing up geodesic distances between the inpainted frames and
the groundtruth frames, we obtain joint rotation loss:

L 𝑗𝑜𝑖𝑛𝑡 =
𝑘=𝑁1+𝑁2∑

𝑘=1

𝑗=𝐽∑
𝑗=1

𝑑𝑔𝑒𝑜 (R𝑗
𝑘
, R̂

𝑗
𝑘
), (5)

where R𝑗
𝑘
represents the rotation matrix of the j-th joint in the k-

th frame of C𝑔𝑛𝑑 , while R̂
𝑗
𝑘
represents the rotation matrix of the

j-th joint in the k-th frame of Ĉ𝐽 . For root point loss, we adopt L-1
distance as loss function:

L𝑟𝑜𝑜𝑡 =
𝑖=𝑁1+𝑁2∑

𝑖=1

| |𝐶𝑅
𝑖 −𝐶

𝑅
𝑖 | |, (6)

where 𝐶𝑅
𝑖 is the i-th frame of C𝑅

𝑔𝑛𝑑
, while 𝐶𝑅

𝑖 represents the i-th
frame of Ĉ𝑅 . The two sub-models are trained separately.

To summarize, we devise a two-stage framework to apply chore-
ography experience intomusic-dance synthesis. In the first stage, a
CAU prediction model arranges a CAU sequence according to the
input music. The CAU prediction model is designed as a CAU pre-
diction model so as to consider both the musical context and the
CAU context when arranging CAUs. In the second stage, we con-
vert the CAU sequence to human motions that can directly drive
humanoid animations. A spatial-temporal inpaintingmodel is used
to generate natural and smooth transition between adjacent dance
motions.

6 EXPERIMENT
In this section, we conduct extensive experiments to demonstrate
the effectiveness of our framework. We evaluate our framwork on
the CAU annotation dataset. Our framework has shown better per-
formance compared with baseline methods, both qualitatively and
quantitatively. Afterwards, we verify the effectiveness of our mo-
tion generation model with quantitative experiments.

6.1 Experiment Setup
Dataset. The expert choreographic annotations we collect come
as pairs of music pieces and CAU sequences. Specifically, we col-
lect 62 pieces of dancing music and 164 types of CAUs. For each
piece of music, we invite professional choreographers to choreo-
graph for each piece of music and record their choreography as
CAU sequences. We annotate each CAU in the CAU sequece with
its start time and end time in the music. These annotations include
four types of dance (Waltz, Tango, Cha Cha, and Rumba) with a
total of 94 minutes of music.

The CAU annotations used in this model consist of all the types
of CAU we collected from expert choreographers and three other
special annotations: [SOD], [EOD] and [NIL], summing up to a to-
tal of 167 annotations. [SOD] and [EOD] represent start of dance
and end of dance respectively, performing similar functions to those
of [SOS] and [EOS] annotations used in NLP problems. [NIL] an-
notation is introduced to imitate the decision of start time in chore-
ography. One [NIL] annotation represents waiting for one musical

beat. One possible CAU sequence generated by our model could
be: [NIL, NIL, C-1-3, C-18-1]. The first two [NIL] annotations rep-
resents that the dance should start after the first two beats, while
[C-1-3] and [C-18-1] are normal CAUs collected from expert chore-
ographers.

Meanwhile, we ask professional dancers to perform dances con-
ssits of the aforementioned CAUs and record their performances
through motion capture devices. Then we crop segments corre-
sponding to each CAU from the motion capture data to form a
motion dataset. The FPS (frame per second) of our motion capture
data is 80, we collect a total of 12688 frames of motion capture data.
During training, each time, we clip a segment of 192 frames ran-
domly from the motion capture data and set the motion blending
window size to 64.

ImplementationDetails.Wefirst extract acoustic features from
raw input music usingMadmom [3] toolkit. Specifically, we extract
deep chroma spectrum [18] X𝑐 , beat feature [4] X𝑏 and onset fea-
ture [8] X𝑠 . The frame-per-second (FPS) of X𝑐 is 10 while the FPS
ofX𝑏 andX𝑠 is 100.The dimension of each frame ofX𝑐 is 12, while
the other two features are both 1D vectors.

Then for the network architecture, the encoder of the CAU pre-
diction model contains 5 1D convolutional layers, and we choose
ReLU as activation function. The sliding window size of this local
musical feature encoder is set to 10 seconds. The acoustic features
are firstly convolved through the 5 convolutional layers and then
fed to an MLP layer to output a 64-dimension local musical feature.
The embedding dimension of CAU is set to 128, and the decoder of
the CAU prediction model consists of an MLP layer and a GRU
with 64 units.

Before feeding the recordedmotion capture segments of the gen-
erated CAU sequence to ourmotion generationmodel, we align the
kinematic beats with musical beats. A kinematic beat refer to the
sudden motion deceleration. We detect the sudden deceleration of
human limbs and mark the times of such deceleration as kinematic
beats. Afterwards, we align them with musical beats detected by
Madmom [3].

The frame encoder Φ𝑒 and the frame decoder Φ𝑑 of the motion
generation model are both 1D convolutional networks with 6 con-
volutional layers and we adopt ReLU as their activation function.
The dimension of motion embedding space is set to 84. The 2D U-
NetΦ𝑢 consists of 4 blocks, each block is made up of 4 downsample
layers and 4 upsample layers. The number of hidden states of each
block is set to 32. In practice, we mask out the middle part of a
clip of motion capture data and then feed the masked clip to the
motion generation model to reconstruct the original motion. The
size of G𝑖 are set to 64 frames, i.e. the model takes 192 frames of
motion data and outputs 192 frames of inapinted motion data.

We adopt RMSprop algorithm [11] to train our CAU prediction
model for 1000 epochs with an initial learning rate at 10−3. We ap-
ply ReduceOnPlateu learning rate decay strategy provided by Py-
Torch [25] with the patience set to 8 and the decay factor set to 0.9.
For the motion generation model, we adopt Adam algorithm [17]
as optimizer and train the model for 400 epochs with a mini-batch
size of 48 samples and a initial learning rate at 10−3. ReduceOnPla-
teu strategy is also applied, with the patience set to 5 and the decay
factor set to 0.7.
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Figure 5: Comparison of GeneratedDances.The dances generated byMusic2Quater (directlymusic-to-dancemapping baseline)
collapse to a static pose after the first few seconds of music, while our ChoreoNet can generate different motions according to
the input music.

Table 1: Comparison of Different Methods

Methods BLEU-4 Music Matchness Motion Naturalness Motion Multimodality
Music2Quater - 2.47 2.31 2.09

One-to-one CAU Prediction 0.0823 - - -
ChoreoNet Non-recurrent 0.539 3.78 4.05 3.80

ChoreoNet 0.704 3.88 3.94 3.82

6.2 Metrics
To evaluate the effectiveness of our framework, we adopt differ-
ent metrics for the CAU prediction model and the motion gen-
eration model respectively. For the CAU prediction model, BLEU
score [24] is used for quantitative comparison. BLEU score is orig-
inally designed to evaluate the quality of machine-translated text.
In our experiment, we adopt it to evaluate the quality of the gen-
erated CAU sequences. For the motion generation model, we eval-
uate the geodesic distance and FID [14]. For geodesic distance, we
evaluate the human joint rotation distance between the generated
transition and the groundtruth. For FID, we evaluate the distance
between the feature of the generated human motions and the fea-
ture of the real human motions. We train a motion auto-encoder
on our motion capture dataset as the feature extractor for our FID
evaluation.

We also conduct a user study to evaluate the quality of the dances
generated by out framework. Participants are required to rate the
following factors from 0 to 5: (1) the matchness between dance and
music, (2) the naturalness of the dancemotions, (3) themultimodal-
ity of the dances.

6.3 Comparison with Baselines
In this section, we compare the following baseline methods: (1)
Music2Quater. This method directly maps musical features to hu-
man skeleton keypoints. It’s similar to the LSTM-autoencoder pro-
posed by Tang et al. [30], but replaces LSTM with GRU and adopts
quaternion as motion representation. (2) One-to-one CAU predi-
tion.This method takes musical features as input and outputs CAU
sequences without refering to the previous CAU context. It’s im-
plemented by replacing the decoder of our CAU prediction model
with a simpleMLP layer. (3) ChoreoNet non-recurrent.Thismethod

replaces the decoder of our CAU prediction model with a CNN and
takes the last predicted CAU as input. Because the new decoder
does not have hidden state, it’s only capable to capture the local
CAU context rather than the whole CAU context. (4)The proposed
ChoreoNet framework.

Quantitative Evaluations. We perform a quantitative evalua-
tion of the quality of the CAU sequences generated from the input
music. Specifically, we select 5 pieces of dancing music that are not
in our training dataset. Afterwards, we evaluate the BLEU scores
of CAU sequences generated from these music. The BLEU score
measures the similarity between the generated CAU sequences
and the CAU sequences we collected from professional choreog-
raphers. Table 1 shows the evaluation results. The BLEU score of
Music2Quater is not given because it does not produce CAU se-
quences in the dance motion synthesis process. Overall, we can
see the CAU context is crucial to CAU prediction. The one-to-one
CAU prediction method ignores CAU context produces poor re-
sults. Replacing the GRU decoder with a CNN would also cause
performance degradation. Our framework outperforms the Chore-
oNet non-recurrent baseline by 0.165 with 0.704 BLEU score on
our CAU annotation dataset.

Qualitative Evaluations. We compare the quality of dances
synthesized by differentmethods. Dances generated byMusic2Quater
tend to collapse to a static pose after first few seconds. The noisy
and highly redundant nature causes difficulty for the model to
directly map musical feature to human skeleton keypoints. For
ChoreoNet w/o CAU context, the generated dances are made up
of some random actions, while ChoreoNet with local CAU context
is able to generate valid dances but tend to produce some repeated
actions. This proves that CAU context is crucial to our framework.
To further investigate the quality of synthesized dances, we also



Table 2: Comparison with Linear Blending. We evaluate the
geodesic distances and FID of the linear blending baseline
and our spatial-temporal inpainting method with different
blending window sizes.

Methods Geodesic Distance FID

Linear Blending (16 window) 1.72 × 10−2 85.1
Ours (16 window) 1.24 × 10−3 76.9

Linear Blending (32 window) 1.80 × 10−2 75.8
Ours (32 window) 1.31 × 10−3 67.8

Linear Blending (64 window) 1.95 × 10−2 69.7
Ours (64 window) 1.33 × 10−3 63.9

Linear Blending (128 window) 2.08 × 10−2 105.4
Ours (128 window) 1.97 × 10−3 78.4

conduct a user study. 17 participants are asked to rate ’matchness
with music’, ’motion naturalness’ and ’motion multimodality’ of
each synthesized dances. The results of the user study is shown
in Table 1. From the results, we can see that compared to the Mu-
sic2Quater baseline, our ChoreoNet framework scores 1.41 points
higher in Music Matchness, 1.63 points higher in Motion Natural-
ness and 1.73 points higher in Motion Multimodality. The results
confirm our observation that the ChoreoNet framework generates
dances of higher quality than directly music-to-skeleton mapping
methods.

6.4 Analysis on Motion Generation Model
In order to evaluate the performance of our spatial-temporal in-
paintingmodel, in this section, we study it from three aspects. First,
we compare it with linear blending baseline. Next, we conduct abla-
tion study to verify the effectiveness of the frame encoder/decoder
and the two sub-model design. Finally, we adjust the blending win-
dow size to analyze the impact of different blending window sizes.

Comparison with Baseline. To verify the effectiveness of our
spatial-temporal inpainting model, we compare it with the linear
blending baseline. This is a solution used by previous researchers
to concatenate two adjacent segments of motion data. Specifically,
we conduct linear blending on human joint rotation within the
blending window. The results are shown in Table 2. Our method
achieves produce motion transition with much smaller geodesic
distances than the baseline.

Ablation Study.To verify the effectiveness of our spatial-temporal
inpainting model, we compare it with the following methods. (1)
Ours w/o sub-model. This method ablates the two sub-model de-
sign, there is only one model to inpaint both human joint rotation
and the root point. (2) Ours w/o frame encoder. This method ab-
lates the frame encoder and decoder, all the motion inpainting is
conducted in the originalmotion parameter space.We calculate the
geodesic distance per frame between the generated motion tran-
sition and the groundtruth to evaluate the effectiveness of these
methods.

Table 3 shows the test geodesic distances of all the methods.The
results show that the designs of frame encoder/decoder and sub-
models increase the performance by a large margin.

Table 3: Comparison with Ours w/o frame encoder and Ours
w/o sub-model. The blending window size is set to 64.

Methods Geodesic Distance

Ours w/o frame encoder 2.02 × 10−3
Ours w/o sub-model 5.14 × 10−3

Ours 1.33 × 10−3

Motion BlendingWindow Size Analysis.The size of motion
blendingwindow is an important hyper-parameter. Small blending
window would cause quick and unatural motion transition while
big blending window causes difficulty to our model as it needs
more capacity to inpaint a larger segment of missing motion tran-
sition.The same holds true for the linear blending baseline method.
As it has no other parameters, both big or small blending window
would cause undesirable results. To evaluate the quality of gen-
erated motion transition, we adopt FID [14] to measure the dis-
tance between the generatedmotion transition and the real motion
capture data. As there exists no standard feature extractor for mo-
tion data, we train a motion auto-encoder on our motion capture
dataset as motion feature extractor.

From the results shown in Table 2, we observe that theminimum
FID of ourmodel occurs at blendingwindow size of 64 frames. Both
small transition window size and large transition window size in-
crease the FID. The results confirm the observation that proper
transition window size leads to better transition quality.

7 CONCLUSION
In this paper, we formulate music-to-dance synthesis as a two-
stage procedure to introduce human choreography experience. Firstly,
we define choreographic action unit (CAU) and build a dataset con-
taining 62 pieces of dancing music and 164 types of CAUs. Each
piece of music is coupled with human expert CAU annotations.
Based on the dataset, we propose amusic-to-dance synthesis frame-
work to implement the two-stage music-to-dance synthesis proce-
dure. In the first stage, a CAU prediction model is used to generate
CAU sequences from musical features. Then we apply a spatial-
temporal inpainting model to generate dance motions from CAU
sequeces.We conduct extensive experiments to verify the effective-
ness of our framework. The results show that compared to base-
line methods, our CAU prediction model generate CAU sequeces
of higher quality and our spatial-temporal inpainting model pro-
duce more natural and smoother motion transition.

Overall, our framework improves the music-to-dance synthe-
sis performance by a large margin. Furtherly, the proposed CAU-
based formulation paves a new way for future research.
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