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a b s t r a c t 

Cross-media analysis exploits social data with different modalities from multiple sources simultaneously 

and synergistically to discover knowledge and better understand the world. There are two levels of cross- 

media social data. One is the element , which is made up of text, images, voice, or any combinations of 

modalities. Elements from the same data source can have different modalities. The other level of cross- 

media social data is the new notion of aggregative subject (AS)— a collection of time-series social el- 

ements sharing the same semantics ( i.e. , a collection of tweets, photos, blogs, and news of emergency 

events). While traditional feature learning methods focus on dealing with single modality data or data 

fused across multiple modalities, in this study, we systematically analyze the problem of feature learn- 

ing for cross-media social data at the previously mentioned two levels. The general purpose is to obtain 

a robust and uniform representation from the social data in time-series and across different modalities. 

We propose a novel unsupervised method for cross-modality element-level feature learning called cross 

autoencoder (CAE). CAE can capture the cross-modality correlations in element samples. Furthermore, 

we extend it to the AS using the convolutional neural network (CNN), namely convolutional cross au- 

toencoder (CCAE). We use CAEs as filters in the CCAE to handle cross-modality elements and the CNN 

framework to handle the time sequence and reduce the impact of outliers in AS. We finally apply the 

proposed method to classification tasks to evaluate the quality of the generated representations against 

several real-world social media datasets. In terms of accuracy, CAE gets 7.33% and 14.31% overall incre- 

mental rates on two element-level datasets. CCAE gets 11.2% and 60.5% overall incremental rates on two 

AS-level datasets. Experimental results show that the proposed CAE and CCAE work well with all tested 

classifiers and perform better than several other baseline feature learning methods. 

© 2016 Elsevier B.V. All rights reserved. 
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1. Introduction 

With the rapid development of the Internet, people have be-

come increasingly dependent on social connections. Social media

data are form by multiple modalities, for instance, text, images,

voice, social interactions, etc . Moreover, the modalities in data sam-

ples vary very much. Social media data has created different types

of correlational structures and distinctive statistical properties. Tra-

ditional approaches focus on dealing with single modality data or

fusing data of multiple but same modalities. In contrast, cross-

media learning focuses on homogeneous and heterogeneous mul-

timedia data. This multimedia data from various sources needs to

be integrated as a means to discover knowledge about the world
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ynergistically. We refer to this problem as the core problem for

ross-media learning. 

Cross-media social data is based on two levels: the element

evel and aggregative level. At the element level, users create and

pread numerous social media elements such as blogs, tweets, pho-

os, and videos across various modalities. These blogs may have

hotos and videos often contain textual content such as hashtags

nd title descriptions; however, not every blog has a photo, and

ot every video includes text. At the aggregative level, collections

f cross-media social elements are defined as aggregative subjects

AS) by the semantics they share. For example, photos make up

n album on image-sharing websites such as Flickr or Instagram,

here each album is an AS example; tweets make up a timeline

or a user on social networks like Twitter or Facebook, where the

imeline is an AS example; questions and comments make up a

hread on Q&A communities like StackExchange or Quora where

he thread is an AS example. Moreover, during an emergency event
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Fig. 1. Illustration of the concepts and applications of learning robust and uniform features for cross-media social elements and AS. 
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ike the Fukushima earthquake, a diverse set of people may upload

hotos, post tweets, and share blogs about this topic. For exam-

le, these social media data about the same Fukushima earthquake

opic form an AS sample. Fig. 1 illustrates examples of social ele-

ents and AS. There are two characteristics of the elements in an

S: (1) they are in a time-series; (2) each element may contain

ultiple modalities. Nevertheless, the modalities of the elements

ay differ from each other. Elements have multiple and different

odalities. 

Given a social media dataset of elements or AS, the key problem

o be addressed is establishing uniform features for unstructured

omogeneous and heterogeneous cross-media data. There are cer-

ain demands for modeling cross-media social elements and AS for

any social media applications including classification, retrieval,

nd recommendation systems. The representation of the data or

he choice of features used to represent the inputs is critical to the

verall performance of the applications. 

In this study, our goal is to obtain robust features for cross-

edia social elements and simultaneously extract the uniform fea-

ures for AS. The problem is non-trivial and poses a set of unique

hallenges. First, the elements are under a cross-modality setting.

hey can contain more than one modality. Moreover, their modal-

ties can differ from each other. How do you obtain the modality-

nvariant representations? Second, the elements in AS are created

ver time and in time-series. Each of them has a specified con-

ext. How do you maximize the use of the time series and context

nformation? Third, there are outliers among the elements of AS.

oreover, there are naturally occurring noise factors among the

lements. For example, there can be document images such as “a

assport” in a travel album. How to reduce the impact of outliers

n data? 

The red dashed-line box in Fig. 1 identifies the problem ad-

ressed in this study. The solid line with an arrowhead in the red

ox indicates the timeline of the elements in ASs. In addition, so-

ial elements are listed around the timeline. The dashed lines with

he arrowheads indicate the targets of social interactions. 

Deep learning [1,11,12] , utilizing deep architectures and effec-

ive learning algorithms, has been emerging as a comprehensive

aradigm for a vast range of problems. Krizhevsky et al. demon-

trated a considerable improvement on image classification using

onvolutional neural networks (CNNs) [17] . Deep neural networks

lso achieve the state-of-the-art in multimedia areas with unstruc-

ured data [20,26,33] . Researchers also investigate neural networks

or retrieval tasks [7,43] . There are works to integrate deep learning

ith other intelligence paradigms, for example, Zhou et al. [44] use

eep neural networks for a context-aware stereotypical trust model

n a multi-agent system. 

We formulate the cross-media social elements feature learn-

ng problems and AS feature learning problems, respectively. We

ropose a novel unsupervised method for feature learning of
ross-media social elements, namely cross autoencoder (CAE). A

wo-phase training method for training CAE with massive cross-

odality data sample is presented. CAE can learn cross-modality

orrelation by an inductive cropping strategy, while also making

se of the massive data with multiple and different modalities.

urthermore, we propose to use a CNN framework with CAE filters

or AS-level feature learning, namely convolutional cross autoen-

oder (CCAE). We unroll the convolution operation and train CAE

lters in CNN offline with the patches extracted from data samples.

o the best of our knowledge, CCAE addresses a completely new

roblem to represent collections of cross-media elements, whereas

revious technical works always focus on single independent ele-

ents [7,26,33] . 

Our contributions can be summarized as follows: 

• We formulate the feature learning problem for cross-media so-

cial data with respect to social elements as well as social AS.

We evaluate the quality of the learned features in the context

of classification. 

• We propose a CAE that learns modality-invariant features from

cross-media social elements with different modalities in a two-

phase unsupervised manner. 

• Applying CAE as filters to handle cross-media elements, we em-

ploy a CNN framework to learn features for social AS. The CNN

framework can manage the time sequence in social AS and re-

duce the impact of outliers in the social data. 

To evaluate the quality of the proposed learning algorithm,

e conduct experiments with classification tasks using real-world

atasets from social media websites: Weibo, Sougo, and Flickr. We

resent experimental results for social elements using CAE and for

ocial AS using CCAE. In terms of accuracy, CAE gets 7.33% and

4.31% overall incremental rates on two element-level datasets.

CAE gets 11.2% and 60.5% overall incremental rates on two AS-

evel datasets. Results indicate that CAE learns cross-modality cor-

elation from cross-media social data. Further, supervised tasks us-

ng features from CAE show significant improvement as compared

ith baselines, and the experiments for AS show CCAE has supe-

ior performance for feature learning. 

The remainder of this paper is organized as follows: In

ection 2 , we formulate the feature learning problem for cross-

edia social data. In Section 3 , we briefly survey some mainstream

ethods for feature extraction and emphasize deep learning meth-

ds using autoencoders. In Section 4 , we propose CAE for learning

odality-invariant features of social media elements, and CCAE for

earning uniform features for AS in social media. In Section 5 , we

resent some experimental results. Section 6 concludes the paper. 
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Table 1 

Multimedia tasks settings comparison. { χ i } is data with one modality from a heterogeneous data set that D i and D k are 

heterogeneous if and only if k � = i . 

Setting / phase Feature Supervised Testing 

learning learning 

Multimedia { χ j, k | j ∈ D U } { χ j, k | j ∈ D V } { χ j, k | j ∈ D W } 
Multi-modality fusion { χ j, k | j ∈ D U , k ∈ �} { χ j, k | j ∈ D V , k ∈ �} { χ j, k | j ∈ D W , k ∈ �} 

Cross modality 
⋃ 

k ∈ �{ χ j,k | j ∈ D U } ⋃ 

k ∈ M 

{ χ j,k | j ∈ D V } , M ⊂ �
⋃ 

k ∈ M 

{ χ j,k | j ∈ D W } , M ⊂ �

Shared representation 
⋃ 

k ∈ �{ χ j,k | j ∈ D U } ⋃ 

k ∈ M 

{ χ j,k | j ∈ D V } ⋃ 

k ∈ N 

{ χ j,k | j ∈ D W } , N ∩ M = ∅ 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2 

Table of notations. 

Symbol Description 

χ j the j -th multi-modality element 

χ j, k the k -th modality in the j -th element 

K the number of possible modalities in elements 

M k the dimensionality of k -th modality raw feature 

y j an encoded representation of a social media element 

T : χ j → y j the transformation model maps all social media 

∀ j elements to their corresponding representations 

M y the dimensionality of element representations 

X i the i -th AS sample in a dataset 

χ i 
j 

the j -th cross-modality element in X i 

N X i the number of elements in the i -th AS sample 

Y i an encoded representation of an AS sample 

T : X i → Y i the transformation model maps all AS sample to 

∀ i their corresponding representations 

M Y the dimensionality of AS representations 

L i the classification label of AS sample X i correlated to 

representation Y i 
N l the number of samples in the training set 

N u the number of samples in the testing set 

x the input to the autoencoders 

y a representation generated by autoencoders 

θ the autoencoder parameter set { W, ˆ W , b, ̂ b } . 
g ; ˆ g the activation functions in neural network 

ˆ x the reconstructions of input x 

J ( ·) the cost function of an autoencoder 

� the regularization term 

λ the regularization weight 

� the set of indexes of all modalities 

f k ( ·) CAE encoder on the k -th modality 

M a non-empty subset of �

χ j, � all the modalities of element χ j 

χ j, M 

the modalities in M of the j -th element 

ˆ χ j,k the k -th modality of the reconstruction of element χ j 

ˆ χ j, M 

the modalities in M of the reconstruction of element χ j 

ˆ χ j, � all the modalities of reconstruction of element χ j 

N l a proper, non-empty subset of �
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2. Problem formulation 

There are three phases relating to general multimedia tasks:

the feature learning phase, the supervised learning phase, and the

testing phase. Upon examination of the different data modalities

considered, there are several settings pertinent to multimedia

tasks: the multimedia setting, the multi-modality fusion setting,

the cross-modality setting, and the shared representation setting.

The dataset for feature learning, usually large scale and unlabeled,

is denoted by D U ; the labeled dataset for supervised learning is

denoted by D V ; and the testing dataset is denoted by D W 

. We sum-

marize the four settings in Table 1 . Traditional research focuses

on working with each single multimedia modality. All the labeled

and unlabeled training data, as well as the testing data, are within

same modality k . Multi-modality fusion considers different modal-

ities as all these are available through all phases. It tries to fuse

data from different modalities in either an early [28] or late [5] fu-

sion manner for combining heterogeneous modalities for the same

goal. Cross-modality setting aims at learning better representa-

tions for modalities with unlabeled data from multiple modalities

[25,26] . Data from all modalities is available only during feature

learning. Shared representation is more challenging given that the

learned features must capture correlations across different modali-

ties to form a modality-invariant representation of data [26] . In the

supervised training phase and testing phase, different modalities

are presented. Cross-media learning problems can be covered by

cross-modality setting and shared representation setting. 

Notations that will be used in the rest of the paper are listed in

Table 2 for reference. 

Definition 1. A social media element , or simply an element, is a

multi-modality data sample χ j = [ χ j, 1 ; χ j, 2 ; · · · ; χ j,K ] that has K

possible modalities χ j,k ∈ � 

M k , k = 1 , 2 , · · · , K. χ j is a 
∑ K 

k =1 M k di-

mensional data vector. 

Based on the definition of a social media element, we formulate

the general-purpose social media element modeling as a feature

learning problem: 

Problem 1. General-purpose social media element modeling is a

feature learning problem finding a transformation T : χ j → y j , ∀ j

that maps social media elements { χ1 , χ2 , ���} into their repre-

sentations { y 1 , y 2 , ���}. y j ∈ � 

M y . The resultant representations { y j }

contain significant information about the original elements and can

be used as features in other tasks. 

AS in social media are collections of social elements. The ele-

ments are often organized in time series. The characteristic consis-

tency of elements in AS is the characteristic of the AS item, which

is also a base characteristic of each element. However, each ele-

ment also has its own specific characteristic. And there are noise

and outliers. It is more important to learn uniform features for the

AS than to consider single elements. The characteristic of AS shall

better reflect the facts of the user who post them and supports

high-level decision-making. Analysis of any small piece is insuffi-

cient for inferring the whole. An AS introduces further difficulties.
ne major challenge is the integration of the elements in the pres-

nce of outliers and high noise. Another challenge comes from the

ross-modality nature of social elements. As mentioned before, so-

ial elements often have multiple components. There are many off-

he-shelf methods designed for dealing with each single modality

nd integrating multiples of them. It becomes noteworthy that sig-

ificant modalities may be missing due to factors such as privacy

ssues. Simply dropping the incomplete elements or ignoring the

act of incompleteness will result in a degraded model and failure

o support any reasonable high-level decision. 

We formally define the AS in social media as follows: 

efinition 2. A sample of AS is a series of multi-modality ele-

ents. Let χ i 
j 
, j = 1 , 2 , · · · , N X i 

denotes j -th element in the i -th AS

ample X i . The i -th AS sample is X i = [ χ i 
1 
χ i 

2 
· · ·χ i 

N X i 
] . 

We formulate the problem of general-purpose AS modeling as

 feature learning problem: 
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roblem 2. General-purpose AS modeling is a feature learn-

ng problem finding a transformation T : X i → Y i , ∀ i that maps AS

amples { X 1 , X 2 , ���} into representations { Y 1 , Y 2 , ���}. Y i ∈ � 

M Y . The

esultant representations { Y i } can be used as features in supervised

earning algorithms. 

The performance of cross-media social data feature learning can

e evaluated by various tasks such as classification, retrieval, or

ecommendation. For a clear measurement, we evaluate the qual-

ty of the learned features by classification tasks. We formulate the

wo classification tasks for social media elements and AS as fol-

ows: 

ask 1. Social media elements classification is to train a classifi-

ation model from a training set { (y l 1 , L l 1 ) , (y l 2 , L l 2 ) , · · · , (y l N l 
, L l N l 

) }
f pairs of elements’ representations and labels. Then use

he learned model to identify the corresponding labels

 L u 1 , L u 2 , · · · , L u N u } with representations of the unlabeled so-

ial media elements in another testing set { y u 1 , y u 2 , · · · , y u N u } . 
ask 2. Social media AS classification is to train a clas-

ification model from labeled AS representations training

et { (Y l 1 , L l 1 ) , (Y l 2 , L l 2 ) , · · · , (Y l N l 
, L l N l 

) } , and then use the learned

odel to identify the corresponding labels { L u 1 , L u 2 , · · · , L u N u } of

nlabeled AS samples in another testing set { Y u 1 , Y u 2 , · · · , Y u N u } of

S representations. 

The performance in these classification problems is an evalua-

ion of how feature learning for cross-media social elements and

ime-series AS can benefit practical applications. 

. Related works 

.1. Feature engineering 

From the viewpoint of machine learning, the representation of

he data or the choice of features used to represent the inputs is

ritical to the overall performance [3,4,16,35] . Many previous works

ave designed useful features manually. The bag-of-words model

9] and lexicons like LIWC2007 [27] and LIWC2007 Simplified Chi-

ese Dictionary [8] are widely used in text modeling. Visual fea-

ures like scale-invariant feature transform [23] and binary robust

nvariant scalable keypoints [21] are important features that are

sed by all types of computer vision tasks. Although designing

eatures manually based on specific domain knowledge has been

idely applied, it may be more powerful to learn such features

ith generic priors [2] . Hand-engineered features are task-specific

nd difficult to adapt to new tasks or new data domains. 

There are also approaches that learn features from data sam-

les. For example, principal component analysis finds the linearly

ncorrelated components with largest possible variance, known as

rincipal components [14] , in an unsupervised manner. Observa-

ions can then be projected to the principal components to get

ompact representations with the most variance retained. Linear

iscriminant analysis [18] derives category information by linear

nalysis. It is a supervised method that finds the direction that

aximally separates samples from different categories. 

Recent advances in deep learning show the superior ability of

eep neural networks to learn features for a vast range of tasks by

aking advantage of their deep architecture and a layer-wise unsu-

ervised feature learning phase [1,11,12,16] . The learning model can

e either restricted Boltzmann machines (RBM) or autoencoders.

he latter are considered the basic blocks of feature learning for

eep learning. Researchers have also attempted to use deep neural

etworks with multiple modalities [7,26,33] . 

Unlike the previous methods using neural networks for model-

ng data with multiple modalities [7,26,33,37] , an important contri-
ution of CAE that we propose is that it can learn cross-modality

orrelations from an inductive cropping strategy and also make use

f a massive amount of data with multiple and different modali-

ies for feature learning. Furthermore, CCAE focuses on high-level

S features, whereas previous methods consider only low-level in-

ependent multimedia data. 

.2. Autoencoders 

An autoencoder is a shallow network with only one hidden

ayer to reconstruct the original input data. The input and output

ayers are of the same size. The reconstruction can be formulated

y 

y = g ( W x + b ) 

ˆ x = 

ˆ g ( ˆ W y + ̂

 b ) , 
(1) 

here x is the original input (raw input or stimuli from lower

ayer); W , ˆ W and b , ˆ b are connection weights and bias of encoder

nd decoder layers, respectively; and g ( ·) and ˆ g ( ·) are nonlinear ac-

ivation functions of each layer. The sigmoid function is often used

s the activation function of deep neural networks. 

 ( z ) = 

1 

1 + e −z 
. (2) 

 is the representation of x in the hidden layer, while ˆ x is the

econstruction. Denoting parameters in an autoencoder as θ =
 W, ˆ W , b, ̂  b } , the reconstruction ˆ x is a deterministic function of x

hat can be written as ˆ x ( x ; θ ) . Performance of an autoencoder is

easured by a cost function 

 ( x ; θ ) = 

1 

2 

∥∥ ˆ x ( x ; θ ) − x 
∥∥2 + λ�( θ ) , (3) 

here the second term �( ·) is a regularization term that is of-

en used to induce special characteristics in an autoencoder. Af-

er pre-training with an autoencoder in an unsupervised way, the

idden layer learns the statistic of input patterns and represents

hem with a set of non-linear features. By stacking autoencoders

y feeding output representations to a subsequence layer as input,

eep features can be produced in a Stacked Autoencoder (SAE). 

Vincent et al. proposed a significant extension of the autoen-

oder based on the idea of making the learned representations ro-

ust to partial corruptions of the input pattern [37] , namely the

enoising Autoencoder (DAE). During feature learning, each input

ample is corrupted in that a fixed number of its components are

elected randomly and set to 0. Then, the information of selected

omponents is removed from the particular sample and the DAE is

rained to fill up these blanks. The trained model is robust to small

rrelevant changes in input. 

Recently, researchers have applied deep neural networks to

ultimedia data. Ngiam et al. propose a bi-modal learning model

or integrating audio and video information based on stacked RBM

26] . Srivastava et al. proposed a deep network model that fuses

ext and image data [33] for classification and information retrieval

asks with remarkable experimental results. Feng et al. applied cor-

espondence autoencoders [7] to the retrieval problem by correlat-

ng hidden representations of two uni-modal autoencoders. 

Based on autoencoders, our approach is different from previ-

us work in that CAE can learn cross-modality correlations from

 massive amount of data with multiple and different modalities.

ross-media social data come with multiple modalities, most of

hich are incomplete. Having the capability to learn from multi-

le modalities and incomplete data is important for the practical

ocial data analysis task. This is what our CAE aiming at and being

apable of. 



68 Q. Guo et al. / Knowledge-Based Systems 102 (2016) 64–75 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Illustration of the basic architecture of a CAE. 
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3.3. Convolutional neural etworks 

CNNs have a large learning capacity, while having fewer con-

nections and parameters to learn compared with similar sized

standard network layers [17,19] . The key idea is to replace the fully

connected feed-forward operations between layers by convolution

operations. CNNs focus on learning stationary local attributes of

images, speech, and other data. We can learn AS-level features

from a series of single social media objects and use these features

to describe the AS. 

A pooling technique is often used in CNNs to reduce the size of

feature maps. There are two commonly used pooling operations:

max pooling and mean pooling. The former calculates the maxi-

mum activation among all activations in the feature map, whereas

the latter uses the mean of the activations. 

The CCAE proposed in this study is based on the CNN frame-

work. We replace the convolution filters in CNN with CAE to ad-

dress cross-media data and propose to train the CAE filters offline

with patches extracted from that data. Feature learning for cross-

media social AS exposes CCAE to a novel and non-trivial problem. 

4. The proposed method 

As we formulate the problems at two levels, the element level

and the AS level, we address the feature learning problem for so-

cial data. 

In the first problem, we have to deal with cross-media social

elements. Cross-modality means that social media elements always

contain more than one modality; however, the representations are

often non-uniform due to heterogeneous modalities and missing

modalities. We propose cross autoencoders (CAEs) to learn invariant

cross-modality features based on the formulation of autoencoders

in Section 3.2 . 

In the second problem, we learn uniform features for AS, ad-

dressing three challenges: time series, cross-modality, and outliers.

To this end, we propose a convolutional cross autoencoder (CCAE)

method. In this method, we employ a CNN framework to manage

time series data and avoid outliers. Moreover, we propose to use

CAEs as filters in CNN for modality-invariant representation. 

The goal of the CCAE is different from models for low-level in-

dependent multimedia data, e.g. , denoising autoencoder (dAE) [37] ,

the bimodal deep belief network (bDBN) [26] , and CAE. CCAE fo-

cuses on learning high-level features for AS. 

4.1. Learning Social Elements Features with CAE 

For a cross-media social element, i.e. , data with K modalities,

we denote the set of all modality indexes by � = { 1 , 2 , · · · , K } .
CAE is the leveraging of a set of encoders { f k ( ·)| k ∈ �} for each

modality and corresponding decoders. Outputs of encoders form a

uniform representation. Consider a social element χ j with modal-

ities M , which is a subset of the indexes of all modalities that

M ⊆ �. We formulate the leveraging as follows : ⎧ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎩ 

f k (χ j,k ) = w k χ j,k 

y j = g 

( ∑ 

k ∈ M 

f k 
(
χ j,k 

)
+ b 

) 

ˆ χ j = 

ˆ g ( ˆ W y j + ̂

 b ) , 

(4)

where w k is the connection weight for each modality that W =
[ w 1 , w 2 , · · · , w K ] . We denote each modality k of the element by

χ j, k and the modalities of the element in the set M by χ j, M 

.

The corresponding reconstruction is denoted by ˆ χ j,k and ˆ χ j, M 

. No-

tice χ j = χ j, M 

and ˆ χ j = ˆ χ j, �. y j is a uniform representation of χ j ,

whereas ˆ χ j is a concatenated reconstruction of inputs from each
odality. ˆ χ j is now a deterministic function of χ j, M 

rather than

j, �. We can write it as ˆ χ j (χ j, M 

) . 

Fig. 2 depicts the basic architecture of a CAE which receives

nput from the bottom layer and outputs to the top layer. Cylin-

ers in different colors indicate different modalities. The inputs

ften include incomplete modalities. The middle layer is the uni-

orm representation of input data. We are looking for a modality-

nvariant uniform representation in the middle layer. For a specific

lement χ j , the representation y j should be equivalent when infor-

ation from any non-empty set M � = ∅ of modalities is present. In

AE, we enforce this equivalence making the reconstruction target

he same as the input. We require CAE to reconstruct all modalities

here only M is fed into the encoder, such that ∀ M ⊆ � and M � =
 , ˆ χ i 

j 
(χ i 

j, M 

) = χ i 
j 
. CAE gets its name from its reconstructing across

odalities as well as the cross-modality context it works within. 

According to the design of CAE there are two principles: (1) the

epresentations should retain as much information as in the input

ata, and (2) the representations of input with any combination of

odalities should be equivalent. Then we formulate the cost func-

ion for CAE as follows: 

(χ j ; θ ) = 

1 

2 

‖ ̂  χ j, �(χ j ; θ ) − χ j, �‖ 

2 + λ�( θ ) . (5)

e use the weight decay regularization for generalization in this

tudy. That is, �( θ ) = ‖ θ‖ 2 ; λ is the penalty weight. We train the

utoencoders by minimizing the cost function for all j by stochastic

radient descent. 

Another issue we have to deal with is that real world appli-

ations always have incomplete data available but not usable due

o the limitation of models and training techniques. Fig. 4 shows

hat labeled data for supervised learning is diminished. Meanwhile,

ata in the intersection of multiple modalities, which is often re-

uired for cross-media learning, is not much. 

To maximize the use of training data, we propose a two-phase

raining strategy: (1) Augmented Training (AT) and (2) Partial

raining (PT). In the first phase, we use data with complete modal-

ties to learn basic cross-modality correlation. In the second phase,

e involve all the other data with incomplete modalities. 

AT. In the AT phase, we utilize data with all modalities as

uch as possible. With all modality-complete samples, we con-

truct an augmented sample set. An augmented sample set com-

rises the input set (feeding to CAE) and the corresponding target

et (comparing with decoder output). First, for each combination

f modalities, we copy all the modality-complete samples. Second,

he modalities that are not in the current combination are set to 0

n this copy. Third, we add this copy to the input set. Correspond-

ngly, we add another copy of all modality-complete samples to

he target set. These are repeated for all combinations of modali-

ies. Finally, the CAE is trained by feeding samples from the input

et and is required to reconstruct the corresponding samples from

he target set. 

The procedure to construct the augmented sample set is sum-

arized in Algorithm 1 . 
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Fig. 3. Illustration of CCAE for an AS sample. 

Algorithm 1 Construction of augmented sample set. 

Input : dataset with all modalities D ; modality combinations 

configuration { M } 
1: D in ← ∅; D tar ← ∅ 
2: for each combination M do 

3: D cropped ← D ; D f ull ← D 

4: for each modality k that k ∈ � and k / ∈ M do 

5: ∀ χ j ∈ D cropped , χ j,k ← 0 

6: end for 

7: D in ← D in ∪ D cropped 

8: D tar ← D tar ∪ D f ull 

9: end for 

Output : the input set D in and target set D tar 
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With the augmented sample set, we train the CAE with input

rom the input set and reconstruction to the target in the output

et. Fig. 3 a illustrates the feedforward pass of CAE. The lightly col-

red cylinders with dashed line in the bottom layer indicate the

ropped modalities in a sample from the input set. The feedfor-

ard passes from these modalities are blocked. For a sample χ j in

he augmented sample set with input modalities M , the cost func-

ion is given by: 

(χ j, M 

, χ j ; θ ) = 

1 

2 

∥∥ ˆ χ j (χ j, M 

; θ ) − χ j 

∥∥2 + λ�( θ ) . (6)

n this phase, CAE learns basic cross-modality correlation among

ll modalities. 

PT. Large amounts of samples in the real world have non-

niform (incomplete) modalities. In PT phase, we make use of

amples with incomplete modalities. Because samples of this kind

ave insufficient information for χ j in the cost described in
Fig. 4. Data distribution of different modalities and availability of label. 
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q. (6) , we propose a new partial cost function. We back-propagate

he cost from the modalities available in the sample and block

rom the incomplete ones. As shown in Fig. 3 b, the lightly col-

red cylinders with dashed line in the top layer indicate the in-

omplete modality in the sample. The backward pass from this

odality is blocked. We can categorize samples with respect to

he modalities they have. Ignoring ∅ and �, there are 2 K − 2 pos-

ible combination of modalities in this phase. We denote the set

f available modalities by N l ⊂ �, l = 1 , 2 , · · · , 2 K − 2 . The recon-

truction of each modality is denoted by ˆ χ j,k , where ˆ χ j = ˆ χ j, � =
ˆ χ j, 1 ; ˆ χ j, 2 ; · · · ; ˆ χ j,K 

]
. Each reconstruction component ˆ χ j,k is a de-

erministic function of χ j, N l 
, where ˆ χ j,k 

(
χ j, N l 

)
. Then we derive a

ew cost function as follows: 

(χ j, N l 
; θ ) = 

1 

2 

∑ 

k ∈ N l 

∥∥ ˆ χ j,k 

(
χ j, N l 

; θ
)

− χ j,k 

∥∥2 + λ�( θ ) . (7) 

n this manner, we ignore reconstruction errors on incomplete

odalities because there is no target to compare with. CAE has

earned the cross-modality correlation in the first phase with

odality-complete samples; thus, we assume that the reconstruc-

ion is accurate for the incomplete modalities. This approach al-

ows CAE to use more data samples to obtain a more generalizable

odel. 

An important contribution of CAE is that the proposed method

an learn cross-modality correlations from an inductive cropping

trategy and also it can make use of massive data collections with

ultiple and different modalities for feature learning. 

The training process of CAE in this study can be viewed as a

ata augmentation process. Many previous works have suggested

hat the performance of deep neural networks can be improved by

nvolving more variation in data [31,37] ; this is supported by ex-

erimental works, such as [17] . State-of-the-art training methods

or deep neural networks are optimizing the model locally near

he samples [10,16] . One of the practical methods for increasing

ariation in data is to augment data copies with reasonable data

odifications. For example, dAE [37] can be viewed as random

ata augmentation with pepper noise. Another benefit of data

ugmentation in our method is that it makes it easier working

ith skewed data, which is common in social media data. More

ata from the rare class can be generated. We can apply resample

ethods and the model can form a robust representation from

hem. In this way CAE can works well for skewed data. 

The idea of augmenting data with respect to the modalities in

his study provides a new approach to data augmentation. In the

T phase, data modalities are cropped to form new data samples

ith same or equivalent semantics in the data space. Seung sug-

ested that an autoencoder, being equivalent to a single iteration

f a two layer recurrent network, can learn a low dimensional

anifold [32] . In our method, we encourage the CAE to learn a
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1 http://www.mathworks.com/products/matlab/ . 
2 http://www.di.ens.fr/%7emschmidt/Software/minFunc.html . 
low dimensional manifold in the data space formed by the same

sample with the different combination of modalities. 

4.2. Learning social AS features with CCAE 

To further extend our work to learn uniform features for AS, we

use the proposed CAE as modality-invariant filters in a convolu-

tion framework. Fig. 5 a shows the overall architecture of CCAE. El-

ements are cylinders listed around the time sequence axis with the

time index. Colored sub-cylinders identify different modalities in

an element, whereas the empty ones are for incomplete modalities.

All such elements form a time sequence, i.e. , an AS sample, that is

represented as a sequence of cylinders in the figure. Dashed-line

cylinders in the middle layer are the local connection patches for

CNN. A gray area identifies a typical local connection patch of ele-

ments. Rectangles in the upper layer are feature maps using differ-

ent CAE filters. A gray vertical section identifies CAE filters apply-

ing to one patch. Circles on the top are output features. 

There are all kinds of sequence problems like path planning

[29] and event log mining [36] . In this study, we employ a one-

dimensional CNN framework [19,34] to learn AS-level represen-

tations. The convolution operation is applied to the elements se-

quences along a time dimension. To implement this, adjacent ele-

ments are connected in a local connection patch. Each filter will be

applied on all patches and the activations will form a feature map

corresponding to the filter. Then, the feature map will be summa-

rized by a pooling operation. A longitudinal section of the process

is shown in Fig. 5 b. It shows the connectivity from elements to

one output feature. We use these output features corresponding

to each filter from the pooling operation as representations of AS

samples. 

The size of each filter matches the size of a local connection

patch. The local connection patch can be view as a cross-modality

data item because each element represents cross-modality data.

We can treat the local connection patch as one large cross-

modality element. Consider, for example, the local connection

patch formed by the 2nd, 3rd, and 4th elements in the sequence,

as illustrated by Fig. 5 c. Fig. 5 c is an orthogonal section to Fig, 5 b,

which contains multiple filters and a single patch. CAE filters re-

ceive a patch of samples in the time sequence as the input. The

empty circles in the bottom layer indicate the incomplete modal-

ities. Connections indicated by the red dashed lines are blocked.

With the modality-invariant uniform representation in the mid-

dle layer, CAE reconstructs all modalities including the incomplete

ones to the top. The filters used in our model are not manually de-

fined, but trained as CAE. CAE filters receive these inputs from the

patches and try to reconstruct all the modalities as mentioned in

Section 4.1 . Each CAE filter will generate a feature map. 

Max pooling and mean pooling are the most popular pooling

techniques used in CNNs. Because we pool over time-series el-

ements rather than discrete elements, we consider using mean-

over-instances (MOI) and mean-over-time (MOT). For instance, we

have eleven tweets collected from seven days from one user, MOI

is the total activations divided by eleven (tweets) and MOT is the

total activations divided by seven (days). MOI is simply normalized

over the total number of activations, whereas MOT is normalized

against the time span. In Section 5 , we will experimentally eval-

uate all three operators (MAX, MOI, and MOT) to compare their

effects. 

Parameters in CCAE are local connection weights and biases of

all CAE filters. We learn these parameters with patches from CNN.

We extract local connection patches from CNN by unrolling the

convolution operation. For convenience, we override the notation

χ i 
j 

for it and use this notation for a local connection patch from

now on. 
The algorithm to train the CCAE is summarized in the following

lgorithm 2 . 

lgorithm 2 Train a CCAE for cross-modality AS. 

Input : AS samples; network setting 

1: for each sample do 

2: Unroll convolutional operation and extract local connection

patches 

3: end for 

4: { χ�} ← patches with all modalities 

5: 
{
χN l 

| l = 1 , 2 , · · · , 2 K − 2 
}

← incomplete patches 

6: θ ← randomly initialized weights and zero bias 

Begin AT phase 

7: D in , D tar ← the input set and target set with { χ�} 
8: θ ← update weights and bias using the cost in Eq. (6) with

inputs in D in and target outputs in D tar 

Begin PT phase 

9: θ ← update weights and bias using the cost in Eq. (7) with all

χN l 
, l = 1 , 2 , · · · , 2 K − 2 

Output : parameters θ of the trained network 

. Experimental results and analysis 

We present experiments with the proposed methods in two

arts. First, we evaluate CAE on social media elements data. Then,

e test CCAE against feature learning problems for AS. The exper-

ments are implemented in Matlab 1 with the minFunc 2 optimiza-

ion toolbox. All the experiments are conducted on a machine with

ntel(R) Core(TM) i7-3930K CPU @ 3.20GHz (12 CPUs) and 32 GB

AM. 

The performance of feature learning problems for social media

an be evaluated on a variety of tasks like retrieval, recommen-

ation, and classification. In this study, we evaluate performance

y testing the feature learning methods on classification tasks, us-

ng state-of-the-art classifiers. The overall task can be divided into

hree phases: unsupervised feature learning, supervised learning,

nd testing. First, we apply comparison methods to learn features

rom the training set and get representations for all samples. Sec-

nd, we use the representation obtained from the training set to

rain a state-of-the-art classification model. Third, we evaluate the

lassification performance using the testing set. 

We measure the classification performance by accuracy and F1-

core. Accuracy is the proportion of correct prediction or true re-

ults among testing samples. Conversely, F1-score considers both

he precision and recall of the prediction. More formally: 

Accuracy = 

T P + T N 

T P + F N + F P + T N 

, 

F 1 = 

2 T P 

2 T P + F N + F P 
, 

(8)

here TP, FN, FP , and TN are the number of True Positive, False

egative, False Positive, and True Negative samples, respectively. 

All experiments are conducted with five-fold cross-validation.

e randomly divide the dataset into five equal-size parts. For each

art, we conduct a set of experiments using it as the testing set

nd the other four parts as the training set. In this way, we can

est all samples in the dataset. 

.1. Experiments with CAE 

We evaluate the proposed CAE against two challenging web

pplication tasks: (1) predict stress of users with textual, social

http://www.mathworks.com/products/matlab/
http://www.di.ens.fr/%7emschmidt/Software/minFunc.html
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Fig. 5. Illustration of CCAE for an AS sample. 
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nteractive, and visual features from a leading microblog; and (2)

redict emotion of users with descriptive, social relevant, and

coustic features from voice assistant application. Both datasets

ontain features from mixed modalities. 

.1.1. Datasets 

Weibo-Stress dataset. Microbloging provides a major platform

or people to share their thoughts instantly. As people suffer more

nd more from the stress of the rapid pace of modern life, a mi-

roblog is also a place for people to express their view of life and

xpose their psychological stress. Weibo 3 is the world’s largest Chi-

ese microblog website. We use a dataset collected from Weibo

ith 57,479 items labeled with the psychological lexicon LIWC2007

27] and LIWC2007 Simplified Chinese Dictionary [8] into 6 cat-

gories: Affection, Work, Social, Physiological, Other stress, and

one. It comes with ready-made 17-dimensional textual features,

hree-dimensional social interactive features, and 21-dimensional

isual features [39] . 

Sogou-Emotion dataset. Voice assistants are among the most

opular applications on the smartphone. Voice is a natural and

irect way to convey one’s emotion even without linguistic in-

ormation. Sogou 4 Voice Assistant is among the most well-known

oice assistants. We employ a dataset from Sogou Voice Assis-

ant with 238,704 records and related usage information contain-

ng the following: descriptive information, time of day, and geo-

etric information. 48,211 records come with six emotion labels:

appy, Sad, Angry, Disgusted, Bored, and Neutral [30] . We use a
3 http://weibo.com . 
4 http://yy.sogou.com/ . 

s  

p  

r  

e  
0-dimensional descriptive data and a 45-dimensional social fea-

ure including time and geometric information as well as a 113-

imensional off-the-shelf acoustic feature [30] in our experiments. 

Ground truth. Manually labeling the massive social media

atasets for evaluation is time-consuming and impractical. In this

lace, we follow a compromise method adopted by prior studies

n affective computing of social media [40,41] . We first collect the

ashtags of social media data provided by users and then extract

he affective words among them. The affective word lists related

o psychological stress are constructed according to Kamvar et al.’s

ethod [15] , and those of emotions are built according to Word-

et [6] . The ground truth label for each AS sample is determined

y “votes” of the words extracted in its corresponding time inter-

al. 

.1.2. Experimental setup 

To evaluate the features with the classification problem, we

mployed a four-layer network with 400 neurons for each layer

nd a Softmax output layer for classification. We tested with

arying values of parameters λ = 1 e − 05 , 3 e − 05 , 1 e − 04 , 3 e −
4 , 1 e − 03 , 3 e − 03 , 1 e − 02 , 3 e − 02 . We used three different ex-

erimental setups. First, we tested our method in a strictly cross-

odality context. We trained CAE in the AT phase with all modal-

ties and used each modality for supervised learning and testing.

econd, we incorporated the PT phase and trained our model us-

ng data samples with incomplete modalities. Third, we tested the

hared representation idea that uses different modalities at the su-

ervised training phase and testing. For a baseline, we use the neu-

al networks with the same physical structure and training param-

ters as each tested CAE, but train them as standard autoencoders.

http://weibo.com
http://yy.sogou.com/
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Table 3 

Comparison of classification accuracy between baseline and proposed AT in 

Weibo–Stress dataset. Bold font indicates the best performance for the se- 

lected raw features. 

Single modality Cross-modality 

Textual 52 .27% 52 .75% 

Social 51 .20% 51 .68% 

Visual 78 .57% 79 .58% 

Table 4 

Comparison between accuracy results using single modality, cross-modality 

in AT phase, and cross-modality in both AT and PT phase. Bold font indi- 

cates the best performance for the dataset. 

Baseline AT AT + PT 

Weibo–Stress 51 .60% 55 .38% 55 .68% 

Sogou–Emotion 54 .42% 62 .21% 62 .86% 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5 

Shared representation experiment results compared with random guess- 

ing baseline in accuracy. Bold font indicates the best performance for the 

dataset. 

Baseline Shared representation 

Weibo–Stress ∼16.66% 27.24% 

Sogou–Emotion ∼16.66% 47.17% 
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5.1.3. Results and analysis 

For the first experiment, we trained CAE in the AT phase us-

ing all combinations of data modalities in feature learning. The

Weibo–Stress dataset was investigated. After we learned modality-

invariant features from the data with all modalities, we stacked

up the four-layer network and trained the network with labeled

data from each single modality. Testing was conducted with the

same modality used in supervised learning. For the baseline, we

also tested each single modality using a four-layer network of the

same scale. 

Comparison results are shown in Table 3 . Textual features and

social features are weak features compared with visual features.

Adding strong features to the feature learning phase of weak fea-

tures improves the result. Not surprisingly, we obtain the same

benefit when weak features are added to feature learning of strong

features. The three features get 0.92%, 0.94%, and 1.29% incremental

rates, respectively. There are only 3946 items in the Weibo dataset

with all three modalities. The experiment is rather limited in that

the gain is relatively small. To further take advantage of the large

scale of data, we have to introduce the PT phase. 

For the next experiment, we try to show the effectiveness of

both the AT and PT phases. We created incomplete data from both

datasets for the training phase. In the Weibo dataset, we simply

use all data. 57,175 items of the data have textual features, 15,744

have the social interactive features while 12,857 have visual fea-

tures. In the Sogou dataset, we use all unlabeled data and ran-

domly corrupt 60% of the descriptive features, 60% of the social

features, and 60% of the acoustic features. There are overlaps of

random corruption. Some records may have only one modality left,

and some records are even completely corrupted. Completely cor-

rupted records are not used. We thus have 41,087 records with

all three modalities, 137,194 records with mixed modalities, and

12,212 abandoned records. 

In this second experiment, the supervised learning and testing

used data with mixed modalities, unlike the first experiment. For

each dataset, we adopted single best modality classifiers as the

baseline. 

Experimental results are shown in Table 4 . Involving multiple

modalities with CAE in AT phase gets better result than simply us-

ing a single modality model for each sample. We get 7.33% and

14.31% incremental rates for the Weibo–Stress and Sogou–Emotion

datasets, respectively. A further increase can be observed when

we apply the PT phase to train the model with more incom-

plete modalities data, where the incremental rates were 7.90% and

15.50%. 

For the last experiment of CAE, we demonstrate the capability

of shared representation learned by our proposed method. We use
he AT and PT phases for feature learning. In supervised learning,

e trained the model with the second and third sets of features

nd tested with the first set of features. That is, for the Weibo-

tress dataset, we trained the model using labeled data with social

nteractive and visual features and tested with textual data; for the

ogou–Emotion dataset, we trained the model using labeled data

ith social and acoustic features and tested with descriptive fea-

ures. 

Experimental results are shown in Table 5 . It has to be noticed

hat these results are much better than guessing among six classes

y chance ( ∼ 16.66%). In this experiment, the testing modality

as not participated in supervised learning. No explicit information

asses between the testing modality and the semantic labels pro-

ided. Nevertheless, the model gets significant information from

abeled data with the other modalities and the uniform represen-

ation. 63.51% and 183.13% incremental rates are achieved for the

wo datasets respectively. This is evidence that good representation

cross modalities has been learned. 

.2. Experiments with CCAE 

How do we evaluate the quality of the AS-level representations

enerated by the proposed CCAE? We designed two specialized

lassification experiments. We first applied comparison methods

o learn AS-level representations. Then, we used the representa-

ions in the training set to train a state-of-the-art classifier. Finally,

e evaluated the classification performance using the testing set.

hese two classification settings are both about the much-debated

opic of affective computing of social media [13,40,41] : predicting

sers’ psychological stress states from the Weibo data and predict-

ng users’ emotions from the Flickr data. 

.2.1. Datasets 

Weibo-Stress-U dataset. The dataset is also from Weibo, the

ost popular Chinese microblog platform. It is employed to de-

ect the psychological stress (stressed or not) of a user from his/her

weets over a week. The dataset contains 98,721 tweets from 2843

sers over 202 weeks. All tweets have text; there are also images

nd social interactions. 84,161 (85.25%) tweets have images and

5,708 (46.30%) have social interactions. This is a typical cross-

odality setting. 

Raw features in this dataset are seven dimensions of text fea-

ures [42] , 21-dimensional color features [24,38,39] and four di-

ensions of social interaction features [13,41] . In this experiment,

weets are elements, and a user’s tweet collection within one con-

inuous week is an AS sample. We extract 9,377 AS samples from

he dataset. There are 3106 stressed AS samples and 6271 plain AS

amples. 

Flickr-Emotion-U dataset. Flickr 5 is one of the world’s leading

mage hosting and sharing websites. This dataset is employed to

nfer emotions (neutral, disgust, happy, or sad) of a photo album’s

wner over a week with uploaded images. We use a dataset of

77,449 images from 1268 users from January 2008 to March 2013

http://www.flickr.com
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41] . It is reported that interactions among friends can improve in-

erring both positive (by 44.6%) and negative (by 60.4%) emotions

41] . In this Flickr dataset, 151,151 (85.18%) of all the images have

ocial interaction. 

In this dataset, raw features are 25-dimensional emotion-

etaining visual features [24,38,39] and three-dimensional social

nteraction features [13] . Images and their related properties over

 week form an AS sample. Finally, we extract 12,116 AS samples

rom the dataset. There are approximately 30 0 0 AS samples for

ach emotion category. 

Ground truth. We also use the same method for gathering the

round truth of the data as described in Section 5.1 . This time, we

ollect the hashtags over all elements in the week defined by data.

.2.2. Experimental setup 

Since we formulate the AS modeling problem as an unsu-

ervised feature learning problem, for comparison, we test the

roposed method with three other unsupervised feature learning

ethods: 

• Voting: using the classification result of each element to deter-

mine the class of AS. 

• Principal Component Analysis (PCA) [14] : projecting the obser-

vations to principal components of all samples for AS-level rep-

resentations. 

• Convolutional Neural Network (CNN) [19,34] : using standard

CNN without the proposed CAE filters. 

• Convolutional Cross Autoencoder (CCAE) 6 : using the proposed

method. 

We considered three classifiers to show the generality of our

eatures: Support Vector Machine (SVM) [3,4] ; Random Forest (RF)

22,35] ; and Deep Neural Network (DNN) [34,37] . We tuned each

lassifier with different learned features carefully for a fair com-

arison. 

.2.3. Results and analysis 

Table 6 lists performances of the comparison methods on the

wo datasets. We highlight the best performance of each tested

eature learning method by an underline and that of each classi-

er by bold font. 

Compared to the results of using the element-level voting

ethod, we observe significant improvements by using the AS-

evel methods (PCA, CNN, CCAE). In terms of accuracy (re-

ults by F1 are also shown in Table 6 ), PCA, CNN, and CCAE

ain 7.5% (71.33% over 66.34%), 11.0% (73.64% over 66.34%), and

1.2% (73.79% over 66.34%) incremental rates respectively on the

eibo dataset, and 49.0% (58.93% over 39.56%), 59.3% (63.00% over

9.56%), 60.5% (63.50% over 39.56%) incremental rates respectively

n the Flickr dataset. While the voting method is an effective en-

emble strategy, it is fragile when there are outliers, which are pre-

ented in social media elements. AS representations provide more

nformation for identifying (and avoiding) outliers and providing a

lobal view of all elements. These results reveal that the generated

S-level representations can significantly reduce the impact of out-

iers. 

When compared with PCA, in most cases, CNN and CCAE get

etter results. In terms of accuracy, on the Weibo dataset, CNN

nd CCAE have up to 4.6% (73.25% over 70.01%) and 5.0% (73.49%

ver 70.01%) better results than PCA, respectively. On the Flickr

ataset, CNN and CCAE have up to 5.2% (62.00% over 58.93%)

nd 9.6% (59.81% over 54.57%) better results, respectively. The rea-

on is that the elements of AS in social media are highly time-

rdered. The CNN framework can summarize feature maps by
6 For CNN and CCAE, local connection size is 3 and stride is 1. 

i  

l  

r

ooling methods and forming representations to model time se-

ies in AS. Furthermore, CNN framework connects each single el-

ment in local connection patches to capture the time-series con-

ext, which effectively reduce the impact of outliers. 

Finally, CCAE can provide significant gains over CNN for all

lassifiers. For example, on the Flickr dataset, CCAE shows a

.6% (60.75% over 59.80%)–9.6% (59.81% over 54.56%) improve-

ent over CNN. Because the social media data are under a typical

ross-modality setting, performance will be negatively influenced if

ross-modality correlations are not captured. The improvements of

he results indicate that the proposed CAE in CCAE can effectively

earn modality-invariant features. From the AT and PT phases, CAE

ets better generalization ability by enlarging the available data for

raining. 

It takes approximately one hour to train a CCAE with all sam-

les in each dataset on a machine with Intel(R) Core(TM) i7-3930K

PU @ 3.20GHz (12 CPUs) and 32 GB RAM, which is acceptable. 

Fig. 6 reveals model performance by different values of three

ain parameters. 

Fig. 6 a shows the classification results using different sizes of

he augmented sample set in the AT phase. With more augmented

ata, we obtain better output features and better classification re-

ults. However, excessive augmented data increase the variance in

ata to the model. For balance, we use 250K augmented data sam-

les for optimum performance in our experiments. 

Fig. 6 b shows the performance with different numbers of out-

ut features. A larger number of output features tends to bring

etter classification performance. However, the improvement be-

omes inconspicuous after 400 output features. Therefore, we use

00 output features in our experiments, where performance is sat-

sfactory and there is no degradation of the time efficiency of the

xperiments. 

Fig. 6 c shows the effect of regularization terms. We tune λ from

e-5 to 3e-3. With a very small regularization factor, the model

an suffer a weak generalization ability, and a very large one will

ead to weak features. We select λ = 1e-4; this best suits our

etting. 

.2.4. Error analysis 

We conducted error analysis on the experimental results and

bserved three major types of source of errors. 

First is abnormal data . In our datasets, we observed a significant

mount of online advertisements (and even spamming) on the so-

ial networks. Classifying this type of data composed on purpose

s pointless. Filtering such data as spam could reduce the impact

o a certain degree, but we still cannot get rid of them. 

Second is empirical raw features . In our experiments, we use

aw features proposed in previous studies. These features are well

esigned based on linguistic, art, and social observation that sim-

lify classification tasks [8,13,24,27,30,38,39,41,42] . However, learn-

ng from raw data may be more powerful in predicting the class

abel. In addition, we focus on cross-media setting and a uniform

epresentation for AS of social media, not the relevance of input

eatures. 

Third is unreliable labeling . We label the massive social media

ataset following a compromise method adopted by prior studies

n affective computing of social media [40,41] . This method heav-

ly depends on hashtags provided by users with the social media

lements. However, the hashtags are not always reliable because

f mistaken labeling, the habit of abusing hashtags, or intentional

rony. These phenomena are not rare on social networks. But such

abeling is satisfactory for our evaluation since we have shown the

elative improvement over baseline methods on the same dataset. 
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Table 6 

Prediction performance (accuracy and F1-score) with Weibo and Flickr data. Underlined numbers indicate the best performance of each 

feature learning method; bold font indicates the best performance of each classifier. 

Data Classifier Metric Voting PCA - 400 CNN - 400 CCAE - 400 

MAX MOI MOT MAX MOI MOT 

Weibo SVM Accuracy 66.34% 70 .01% 72 .93% 73 .25% 69 .51% 72 .97% 73 .49% 69 .32% 

F1-score 46.41% 78 .41% 81 .45% 81.82% 77 .44% 81 .41% 81.90% 77 .23% 

RF Accuracy 65 .61% 71.33% 73 .14% 73.64% 70 .81% 73 .44% 73.79% 70 .60% 

F1-score 45 .07% 79.84% 81 .42% 81 .49% 79 .45% 81 .56% 81 .52% 79 .27% 

DNN Accuracy 65 .48% 70 .27% 71 .94% 73 .31% 73 .18% 71 .64% 73 .11% 73 .42% 

F1-score 45 .80% 78 .74% 80 .96% 81 .49% 81 .44% 80 .74% 81 .40% 81 .63% 

Flickr SVM Accuracy 34 .20% 57 .09% 59 .21% 59 .80% 50 .46% 59 .62% 60 .75% 50 .35% 

F1-score 26 .76% 55 .73% 58 .35% 58 .76% 47 .78% 58 .72% 59 .83% 48 .18% 

RF Accuracy 39.56% 54 .57% 52 .58% 54 .56% 51 .99% 57 .42% 59 .81% 56 .64% 

F1-score 35.49% 54 .06% 52 .20% 54 .13% 51 .52% 56 .99% 59 .26% 56 .20% 

DNN Accuracy 34 .40% 58.93% 59 .10% 62.00% 61 .80% 61 .93% 63.50% 61 .97% 

F1-score 28 .02% 58.42% 58 .75% 61 .22% 61.27% 61 .13% 63.01% 61 .22% 

Fig. 6. Classification performance of CCAE features using different parameters. Red curves and boxplots on the left side represent F1-scores; accuracies are shown in blue 

curves and boxplots on the right side. (a) shows the results using augmented sample sets of different size: 33.75K(1/8), 67.5K(1/4), 125K(1/2), and 250K(1) 500K(2). (b) 

shows the results using different numbers of output features: 50, 100, 200, 400, and 800. (c) shows the influence of regularization weight lambda : 3e-5, 1e-4, 3e-4, 1e-3, 

3e-3. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.). 
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6. Conclusion 

People have grown increasingly dependent on online social me-

dia interactions. This suggests that it is important to investigate

the problem of how to model cross-media social data. We pro-

pose two feature learning models to address this problem. To

handle the cross-modality correlations in cross-media social ele-

ments, we propose CAE to learn uniform modality-invariant fea-

tures, and we propose AT and PT phases to leverage massive cross-

media data samples and train the CAE. To manage the social AS

in social media, we further employ a CCAE, which is based on the

CNN framework combined with CAE filters. The CNN framework

manages the time-series social data, and the CAE filters handle

the cross-media social elements. In our approach, the learned AS

level features as well as the local connection patches in CNN are

much less sensitive to outliers. We present experimental results on

several real-world social media datasets to demonstrate that the

proposed CAE learns cross-modality correlation in data and CCAE

gains significant performance improvements over baseline meth-

ods. The proposed CAE and CCAE can be applied to a broad range

of social media applications, such as friend recommendations on

Weibo and Twitter and photo album retrieval by using keywords. 
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