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Abstract

Representation learning (RL) of knowledge graphs aims to
project both entities and relations into a continuous low-
dimensional space. Most methods concentrate on learning
representations with knowledge triples indicating relations
between entities. In fact, in most knowledge graphs there are
usually concise descriptions for entities, which cannot be well
utilized by existing methods. In this paper, we propose a novel
RL method for knowledge graphs taking advantages of en-
tity descriptions. More specifically, we explore two encoders,
including continuous bag-of-words and deep convolutional
neural models to encode semantics of entity descriptions. We
further learn knowledge representations with both triples and
descriptions. We evaluate our method on two tasks, including
knowledge graph completion and entity classification. Exper-
imental results on real-world datasets show that, our method
outperforms other baselines on the two tasks, especially un-
der the zero-shot setting, which indicates that our method is
capable of building representations for novel entities accord-
ing to their descriptions. The source code of this paper can be
obtained from https://github.com/xrb92/DKRL.

Introduction

Knowledge graphs (KG) provide effective structured infor-
mation and have been crucial resources for several intel-
ligent applications including Web search (Szumlanski and
Gomez 2010) and question answering. A typical KG usu-
ally describes knowledge as multi-relational data and rep-
resent as triple facts (head entity, relation, tail entity),
also denoted as (h, r, t), indicating the relation between two
entities.

Based on the symbolic representation of KGs with triples,
people have to design various graph-based methods for KG
applications. As KG size increases, these methods are be-
coming infeasible on large-scale KGs due to computation
inefficiency and data sparsity. To address the challenge, rep-
resentation learning (RL) for KGs has been proposed to em-
bed KGs including both entities and relations into a con-
tinuous low-dimensional vector space (Dong et al. 2014)
(embeddings). As a supplement to symbolic representation,
the embeddings in latent space can significantly promote
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knowledge acquisition and inference (Bordes et al. 2013;
Yang et al. 2014; Neelakantan, Roth, and McCallum 2015).
Most existing RL methods solely learn from fact triples of
KGs (Bordes et al. 2013). In fact, in most KGs there are also
concise descriptions for entities, with rich semantic infor-
mation about these entities. For example, in Fig. 1 we show
the descriptions of two entities in a fact triple sampled from
Freebase, a large-scale KG maintained by Google.

( William Shakespeare, book/author/works_written, Romeo and Juliet )

i i

William Shakespeare was an Romeo and Juliet is a tragedy
English poet, playwright, and written by William Shakespeare
actor, ... early in his career ...

Figure 1: Example of entity descriptions in Freebase.

It is non-trivial for existing RL methods of KGs to uti-
lize entity descriptions. To address this problem, we propose
a novel RL method for KGs, which is able to take advan-
tages of both fact triples and entity description. We name
the method as Description-Embodied Knowledge Represen-
tation Learning (DKRL). In the DKRL model, the embed-
ding of an entity is responsible for both modeling the corre-
sponding fact triples and modeling its description.

For fact triples, we follow a typical RL method TransE
(Bordes et al. 2013) and regard the relation in each triple as
a translation from head entity to tail entity. In this way, the
entity and relation embeddings are learned to maximize the
likelihood of these translations.

Meanwhile, given an entity we will also learn to maxi-
mize the likelihood of predicting its description. For this,
we explore two encoders to represent semantics of entity
descriptions, including continuous bag-of-words (CBOW)
model and deep convolutional neural model. As compared
with CBOW ignoring word orders in text, the convolutional
model takes word orders, i.e., complicated local interactions
of words in text, into consideration.

We evaluate the effectiveness of the DKRL model on
two tasks, including knowledge graph completion and en-
tity type classification. Experimental results on real-world
datasets show that, the DKRL model consistently outper-



forms other baselines on the two tasks. Especially, we also
consider the zero-shot scenario, where some entities are
novel to existing KGs with only descriptions. Existing RL
methods of KGs are incapable of those novel entities, since
no embeddings have been learned for them. However, the
DKRL model can build representations for those novel enti-
ties automatically from their descriptions. The experiments
in zero-shot setting show that, the DKRL model can still
achieve relatively favorable results on the two tasks. This
indicates the good generalization ability and robustness of
the DKRL model, which is particularly important for large-
scale KGs and their applications in Web domain.

Related Work

Recent years there are a variety of methods modeling multi-
relational data in knowledge graphs, many of which en-
code both entities and relations into a continuous low-
dimensional vector space. TransE (Bordes et al. 2013) in-
terprets the relations as translating operations between head
and tail entities on the low-dimensional vector space. The
energy function is defined as

E(h,’l”,t):Hh—FI'—tH, (1)
which indicates that the tail embedding t should be the near-
est neighbour of h + r. TransE performs well in 1-to-1 re-
lations while has issues for modeling 1-to-N, N-to-1 and N-
to-N relations. TransH (Wang et al. 2014b) attempts to solve
the problem of TransE by modeling relations as hyperplanes
and projecting h and t to the relational-specific hyperplane,
allowing entities playing different roles in different relation-
ships. TransR (Lin et al. 2015b) models entities and rela-
tions in distinct semantic space and projects entities from
entity space to relation space when learning embeddings.
PTransE (Lin et al. 2015a) proposes a multiple-step relation
path-based representation learning model.

Most existing translation-based RL methods of KGs only
concentrate on the structural information between entities,
regardless of rich information encoded in entity descrip-
tions. Moreover, because of the limitation of entity repre-
sentations, these models are also not able to validate a triple
when at least one of the entities is out of KGs. However, this
situation can be handled with our DKRL model.

There are several methods using textual information to
help KG representation learning. (Socher et al. 2013) pro-
poses NTN and represents an entity as the average of its
word embeddings in entity name, allowing the sharing of
textual information located in similar entity names. (Wang
et al. 2014a) combines entity embeddings with word embed-
dings into a joint continuous vector space by alignment mod-
els using entity names or Wikipedia anchors. (Zhong et al.
2015) extends the joint model and aligns knowledge and text
embeddings by entity descriptions. These two works repre-
sent new entities using word embeddings of the correspond-
ing entity names. (Zhang et al. 2015) represents entities with
entity names or the average of word embeddings in descrip-
tions. However, their use of descriptions neglects word or-
ders, and the use of entity names struggles with ambiguity.
Moreover, in practical zero-shot scenario, word embeddings
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of new entity names are usually missing in training data. Our
model can directly build representations from descriptions
to avoid such issues, not merely using entity descriptions as
additional information.

Problem Formulation

We first introduce the notations used in this paper. Given a
triple (h,r,t) € T while h,t € FE stand for entities and
r € R stands for relation. E is the set of entities and R is the
set of relationships. 7" stands for the training set. Each entity
and relation embedding takes values in R¥.

Definition 1. Structure-based Representations: hg and
ts are the structure-based representations for head and tail
which can directly represent entities. This kind of represen-
tations is the same as those learned from existing translation-
based models like TransE .

Definition 2. Description-based Representations: hgy
and tq are the description-based representations for head
and tail which are built from entity descriptions. We will pro-
pose two encodes to construct this kind of representations in
the following section.

Methodology

To utilize both fact triples and entity descriptions and be
capable of dealing with zero-shot scenario, we propose
two types of representations for entities, i.e., structure-
based representations and description-based representations.
Structure-based representations do better in capturing infor-
mation in fact triples of KGs, while description-based repre-
sentations do better in capturing textual information in entity
descriptions. We learn the two entity representations simul-
taneously into the same continuous vector space, but do not
force the representations to be unified for the consideration
of better representing ability. The energy function of DKRL
is then defined as

E=FEs+ Ep, 2)
where Eg is the energy function of structure-based repre-
sentations, which shares the same formulation as TransE’s in
Equation 1, while E'p is the energy function of description-
based representations. F'p can be defined by a variety of
measurements. To make the learning process of Fp to be
compatible with E's ,we define Ep as follow:

Ep =Epp + Eps + Esp, 3)
where Epp = ||hg + r — tq|| in which head and tail are
description-based representations. Also we have Epg
lha + r — tg|| and Egp = |lhs + r — tq||, in which
one of h or t uses description-based representation and the
other uses structure-based representation. The energy func-
tion will project the two types of entity representations into
the same vector space with relation representations shared
by all four energy functions, which will have mutual promo-
tion between the two types of representations.

In this paper, we propose two encoders to build
description-based representations in the following subsec-
tions. We first propose a continuous bag-of-words encoder



for entity construction, then we propose a deep convolu-
tional neural network encoder for a better understanding of
textual information.

Continuous Bag-of-words Encoder

From each short description, we can generate a set of key-
words which are usually capable of capturing the main ideas
of entities. We assume that similar entities should have
similar descriptions, and correspondingly have similar key-
words. Those relations cannot be directly detected through
structural information may be found in the internal contact
of their keywords.

In the continuous bag-of-words encoder (CBOW), we se-
lect top n keywords in the description for each entity as the
input (some classical textual features like TF-IDF could be
used for ranking keywords). Then we simply sum up the em-
beddings of keywords to get the entity embedding ignoring
word orders:

“

where x; is the i-th word embedding belonging to the key-
word set of entity e, and eq will be used to minimize Ep.
Fig. 2 shows the framework of the CBOW Encoder.

€eq = X1 + X+ + Xy,

head + relation = tail
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Figure 2: The CBOW Encoder

Convolutional Neural Network Encoder

Convolutional neural network (CNN) is an efficient model
widely used on image and proven to be effective on some
natural language processing tasks such as part-of-speech
tagging, chunking, named entity recognition and semantic
role labeling (Collobert et al. 2011). Recently CNN mod-
els are also proposed for relation classification (Zeng et al.
2014; dos Santos, Xiang, and Zhou 2015). Since CBOW has
the shortage of ignoring the information of word orders and
is easy to be influenced by the quality of keywords extrac-
tion, we propose a convolutional neural network encoder to
further understand the descriptions and exploit the internal
textual information hidden in word orders.

Overall Architecture Fig. 3 shows the overall architec-
ture of the CNN Encoder. The CNN architecture has five
layers, taking the whole description of a certain entity as the
input after preprocessing, and output description-based rep-
resentations of this entity. The entity embedding will then be
learned to minimize the energy function of DKRL.
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Preprocessing and Word Representation In preprocess-
ing we first remove all stop words from raw texts, then we
mark all phrases in descriptions (we simply select all entity
names in training set as phrases) and consider those phrases
to be words. Afterwards, each word is represented by a word
embedding as the input of convolution layer. In our experi-
ments, we use the word embeddings trained on Wikipedia
by word2vec (Mikolov et al. 2013) as inputs for the CNN
Encoder.

Convolution In convolution layer, we set Z® to be the
output of [-th convolution layer and X to be the input of -
th convolution layer. First a size k£ window will slide through
the input vectors in X to get X'("). Specially in the first
layer, X() is preprocessed descriptions represented as a set
of vectors (xg, X1, - ,Xyp), and the window process has

x;(l) = Xivigk—1 = [XzT7 X;T,:le T vxz;kfl]Ta )
where the i-th vector of x’(1) is obtained by concatenating k
column vectors in ¢-th window of input sentences. Due to the
variable length of inputs when proceeding window process,
we also add all-zero padding vectors at the end of every input
vector. The i-th output vector of convolution layer will be:

2 = o(WOXY £ b, 6)
where WO ¢ R’ 71" is the convolution kernel for all
input vectors of [-th convolution layer after window process
and bgl) is the optional bias. n(2l) is the dimension of output
vectors which could be considered as the number of feature
l I @ . . . :

maps. n;’ = k X ny’ where ny’ is the dimension of input
vectors. o is the activation function such as tanh or ReLU.
Note that all zero-padding vectors should have no contribu-
tion in forward propagation nor be updated in back propa-
gation. In this way we can align the variable length of input
sentences while avoiding the possible side effects of all-zero
paddings.

Pooling We use pooling after every convolution layer to
shrink the parameter space of CNN and filter noises. Since
articles are taken as our inputs, we propose different pooling
strategies for different layers.

For the first pooling layer. we split the output vectors of
the convolution layer with size n non-overlapped windows.
In each window, we pick up the max value of every feature
map to make up a new vector. The n-max-pooling is defined
to determine the most significant feature values in each di-
mension of the input vectors within a size n window:

X§2) = maX(Z,(nl%, T 7Z£3.)(i+1)71)' (N
The n-max-pooling can shrink n times the size of feature
representations, thus it will lower the complexity of CNN
encoder and the cost of parameter learning.

However, some descriptions are so complicated that dif-
ferent sentences in a description may have different aspects
of local information. Merely using max-pooling will lead to

enormous information loss. In this case for the last pooling
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Figure 3: The Convolutional Neural Network Encoder

layer, we use mean-pooling instead of max-pooling before
activation to build entity representations. We have

(2
Zi

<3

pt ®)

i=1,---,m

that all m input vectors containing different local informa-
tion should have contribution to the final entity embedding
and can be updated during back propagation. Due to the
different pooling strategies, we are capable of dealing with
variable length inputs and get fixed-length representations
for every entity without too much information loss.

Training

The DKRL model can be stated as a parameter set § =
(X, W W® E R) where X, E, R stand for the em-
beddings of words, entities and relations, and W), W(2)
stand for the convolutional kernels in different layers. We
minimize the following margin-based score function as ob-
jective for training:

-y %

(h,rt)€T (R ,r' t")eT’
—d(h' +1',t'),0),

where v > 0 is a margin hyperparameter, d(h + r,t) is the
dissimilarity function between h+r and t. We test L1-norm
and L2-norm and find that L1-norm performs better in our
tasks. 7" is the negative sampling set of T', we have

T ={(I,r,t)|h € E}U{(h,r,t')|t' € E}
U{(h,r,t)|r" € R},

in which the head, tail or relation are randomly replaced by
another entity or relation in a triple. Note that a triple will
not be considered as a negative sample if it is already in 7.
Since there are two types of representations for both h and
t, entities in the margin-based score function could either be
structure-based representations or description-based repre-
sentations.

max(y + d(h +r,t)
©))

(10)
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Model Initialization The CBOW and CNN Encoders take
plain texts as input and entity embeddings as output to min-
imize the score function stated above. W1, W(2) are ran-
domly initialized and X is pre-trained by Word2Vec learned
on Wikipedia. E and R could either be initialized randomly
or by the pre-trained embeddings with existing translation-
based models such as TransE. For the consideration of ef-
ficiency, we also employ a multi-thread version of CNN to
learn representations.

Optimization The optimization is a standard back prop-
agation using stochastic gradient descent(SGD). The back
propagation will be blocked when meets all-zero paddings
or the current feature value was not considered in pooling
during forward propagation. The chain rule is applied top-
down through the DKRL model until the word embedding
layer. The learning rate could be different for different com-
binations of entity representations.

Experiments
Datasets and Experiment Settings

Datasets In this paper, we adopt FB15K (Bordes et al.
2013), a dataset extracted from a typical large-scale KG
Freebase (Bollacker et al. 2008), to evaluate the DKRL
model on knowledge graph completion and entity classifica-
tion. To confirm that every entity should have description for
the description-based representation learning, we remove 47
entities from FB15K which have shorter than 3 words after
preprocessing or even have no descriptions, and take away
all triples containing those entities in FB15K. The average
number of words in descriptions is 69 after preprocessing,
and the longest description contains 343 words. The remain-
ing training set has 472,860 triples and 1,341 relations, and
test set has 57,803 triples.

For zero-shot learning, we build a new dataset FB20K
which takes FB15K as the seed and shares the same rela-
tions. We select all entities in Freebase which have relations
with entities in FB15K as candidates, then randomly select



new entities from those candidates which have rich descrip-
tions. We also extract all triples with relations in FB15K
whose head or tail is a new entity and the other is in FB20K
into the origin test set of FB15K. We split the test set into 4
types: both the head and the tail are in training set (e — e),
the head is a new entity but the tail is not (d — e), the tail is a
new entity but the head is not (e — d), both the head and the
tail are new entities (d — d). FB20K shares the same training
and validation set with FB15K. The statistics of datasets are
listed in Table 1.

Table 1: Statistics of data sets

Dataset ~ #Rel #Ent #Train ~ #Valid  #Test
FB15K 1,341 14,904 472,860 48,991 57,803
Dataset #Ent #e—e #d—e #e—d #d—d
FB20K 19,923 57,803 18,753 11,586 151

Parameter Settings We implement TransE, CBOW and
CNN for comparison. We train those model with en-
tity/relation dimension n in {50, 80, 100}. Following (Bor-
des et al. 2013), we use a fixed learning rate A among
{0.0005, 0.001, 0.002}, and margin v among {0.5, 1.0, 1.5,
2.0}. For CBOW Encoder, we try different number of top N
keywords and choose top 20 keywords to build entity em-
beddings for the best overall performances. For the CNN
Encoder, we use 4-max-pooling for the first pooling layer
and mean-pooling for the second pooling layer to achieve
the best performance. We try different window size k among
{1, 2, 3} for different convolution layer. Also we set the di-
mension of word embedding n,, among {50, 80, 100} and
the dimension of feature map n y among {50, 100, 150}. The
optimal configurations of CNN are : A = 0.001, v = 1.0,
k = 2,n = 100, n,, = 100, ny = 100.

Knowledge Graph Completion

The task of knowledge graph completion aims to complete a
triple (h,r,t) when one of h, t, r is missing based on mini-
mizing the score function S(h,r,t) = ||h +r — t||.

Evaluation Protocol We conduct our evaluation on
FB15K and consider the knowledge graph completion task
as two sub-tasks: entity prediction and relation prediction.
Following (Bordes et al. 2013), we use two measures as our
evaluation metrics: (1) mean rank of correct entities; (2) pro-
portion of valid entities ranked in top 10 (for entity) or top
1 (for relation). We also follow the two evaluation settings
named as "Raw” and “Filter”. We implement TransE as a
baseline which performs better than results reported in (Bor-
des et al. 2013). In DKRL, both representations can validate
triples separately. Since the results of structure-based repre-
sentation learned in DKRL are similar to TransE, we report
the results of CBOW and CNN which only use description-
based representations. CNN+TransE is a union model of
CNN and TransE which predict by weighting the represen-
tations of two models.
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Results The results of entity prediction and relation pre-
diction are in Table 2 and Table 3. From the results we
observe that: (1) CNN+TransE significantly outperforms
TransE and CBOW in mean rank and Hits@N on both en-
tity and relation prediction, and CNN outperforms TransE
and CBOW in mean rank on entity prediction, which in-
dicate the robustness of CNN representations. The results
show that the textual information in description, which has
been successfully encoded in description-based representa-
tions by CNN, could provide a good supplement for RL of
KGs. (2) Case study shows that simply using structural in-
formation may fail to capture details. For example, it’s hard
to tell whether a soccer player is a goalkeeper or a forward if
there is no explicit relation, but through some latent informa-
tion embedded in words we may find the answer. (3) DKRL
may not have huge advantages over TransE since structure-
based representations already work well on this task. But
DKRL will show its power in zero-shot scenario which can-
not be handled by existing translation-based models.

Table 2: Evaluation results on entity prediction

Metric ‘ Mean Rank | Hits@10(%)

Raw Filter | Raw  Filter

TransE 210 119 48.5  66.1
DKRL(CBOW) 236 151 383 51.8
DKRL(CNN) 200 113 443  57.6
DKRL(CNN)+TransE | 181 91 49.6 67.4

Table 3: Evaluation results on relation prediction

Metric Mean Rank Hits@1(%)
Raw  Filter | Raw  Filter

TransE 291 253 | 695 902
DKRL(CBOW) 2.85 251 65.3 827
DKRL(CNN) 291 255 | 69.8 89.0
DKRL(CNN)+TransE | 2.41 2.03 | 69.8 90.8

Entity Classification

The task of entity classification is a multilabel classifi-
cation task aiming to predict entity types, which is cru-
cial and widely used in many NLP tasks (Neelakantan and
Chang 2015). Almost every entity has types in Freebase
(e.g. The entity Washington County has types including /o-
cations/us_county and location/administrative_division).

We extract all types of entities in FB15K from Freebase
and get 4,054 types. We rank those types by their frequency
and select top 50 types for classification (we remove the type
of common/topic which almost all entities have). The top
50 types cover 13,445 entities. We randomly split them into
training set and test set, the training set has 12,113 entities
while the test set has 1,332 entities.

Evaluation Protocol In training, we use entity represen-
tations learned by TransE, CBOW and CNN trained on
FB15K as features. We use Logistic Regression as classifier



and one-versus-rest for multilabel classification. To make
further comparison, we use a classical textual feature bag-
of-words(BOW) as the baseline. For evaluation following
(Neelakantan and Chang 2015), We use mean average pre-
cision (MAP) which is commonly used in multilabel classi-
fication as the evaluation method for entity classification.

Table 4: Evaluation results on entity classification

Metric FB15K FB20K
TransE 87.9 -
BOW 86.3 57.5
DKRL(CBOW) 89.3 52.0
DKRL(CNN) 90.1 61.9

Results From Table 4 we observe that CNN outperforms
all other models in FB15K. It indicates that CNN features
are more capable of catching entity type information and
have better robustness. The reason is that, it is natural for
CNN to encode both structural information in KGs and tex-
tual information in descriptions to get a better understanding
of entities. CBOW also makes use of both information but
performs weaker than CNN. However, BOW merely takes
textual information into consideration, regardless of the re-
lationships between entities, while TransE only focuses on
the structural information, failing to encode the textual in-
formation embedded in descriptions.

Zero-shot Scenario

The tasks in zero-shot scenario focus on the situation when
at least one of entities in test triples is out of KGs. All ex-
isting models based on structure-based representations can-
not deal with this situation because they have no representa-
tions for entities which are out of KGs. However, the DKRL
model is naturally capable of this situation.

We use FB20K to simulate a zero-shot scenario that all
entities in FB15K are in-KG entities which can be learned
through training, while 5,019 new-added entities are con-
sidered as out-of-KG entities which are built from their de-
scriptions. As for entity classification, we use the same top
50 types in FB15K, put all 13,445 entities covered by those
types in FB15K into training set and 4,050 out-of-KG enti-
ties into test set.

Knowledge Graph Completion in Zero-shot Scenario
We consider CBOW as our baseline since all existing mod-
els using structure-based representations cannot represent
new entities. We propose two evaluation methods for both
encoders. In CBOW and CNN, all entities use description-
based representations, while in Partial-CBOW and Partial-
CNN, entities in training set use structure-based representa-
tions. The test set is split into 4 types: e — e, d — e, e — d
and d — d. In zero-shot scenario, we only focus on the latter
three types which contain at least one out-of-KG entity. The
results are shown in Table 5 and Table 6.

From Table 5 and Table 6 we observe that: (1) CNN sig-
nificantly outperforms other models on all three types of test
triples which achieves approximately 4.2% improvement on
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entity prediction and 7.9% improvement on relation predic-
tion compared to CBOW. It indicates that even in zero-shot
scenario, the DKRL model can still achieve relatively favor-
able results on knowledge graph completion. And the rep-
resentations built with CNN have better performance than
those built with CBOW. (2) The results of partial models are
relatively good, which confirm that the two representations
share the same vector space and could be learned into an uni-
fied one. However, There are still existing some incompat-
ibility between the two representations which will weaken
the performances, comparing to the corresponding models
of CNN and CBOW which use description-based represen-
tations for all entities.

Table 5: Evaluation results on entity prediction in zero-shot
scenario

Metric d—e e—d d—d Total
Partia-CBOW  26.5 20.9 67.2 24.6
CBOW 27.1 21.7 66.6 253
Partial-CNN 26.8 20.8 69.5 24.8
CNN 31.2 26.1 72.5 29.5

Table 6: Evaluation results on relation prediction in zero-
shot scenario

Metric d—e e—d d—d Total
Partial-CBOW  49.0 42.2 0.0 46.2
CBOW 52.2 479 0.0 50.3
Partial-CNN 56.6 524 4.0 54.8
CNN 60.4 55.5 7.3 58.2

Entity Classification in Zero-shot Scenario For entity
classification, we only test on CNN, CBOW and BOW since
TransE has no representations for out-of-KG entities. From
Table 4 we observe that CNN has the best performance
which achieves 4.4% and 9.9% improvement compared with
BOW and CBOW in FB20K. It indicates that description-
based representations of CNN can function well for entity
classification even though we cannot directly use structural
information of triples in test set since they are out-of-KG.

Conclusion and Future Work

In this paper, we propose the DKRL model for represen-
tation learning of knowledge graphs with entity descrip-
tions. We explore two encoders including continuous bag-
of-words and deep convolutional neural network to extract
semantics of entity descriptions. In experiments, we evaluate
our model on two tasks including knowledge graph comple-
tion and entity classification. Experimental results show that
our model achieves better performances than other baselines
on both tasks especially in zero-shot scenario, which indi-
cates the capability of building representations from entity
descriptions.

We will explore the following research directions in fu-
ture: (1) The DKRL model only consider entity descrip-
tions for representation learning, while there are various of



information like textual information of relations or entity
types which could be added to our model. We may take ad-
vantages of those rich information in future. (2) We verify
the effectiveness of description-based representations only
with TransE, and it is not difficult for further explorations
with more sophisticated extension models of TransE (e.g.
TransH, TransR and PTransE). We will explore to extend
DKRL to these models for a better understanding of knowl-
edge graphs.
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