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ABSTRACT 

 

The required length of the utterance is one of the key factors 

affecting the performance of automatic emotion recognition. 

To gain the accuracy rate of emotion distinction, adaptation 

algorithms that can be manipulated on short utterances are 

highly essential. Regarding this, this paper compares two 

classical model adaptation methods, maximum a posteriori 

(MAP) and maximum likelihood linear regression (MLLR), 

in GMM-SVM based emotion recognition, and tries to find 

which method can perform better on different length of the 

enrollment of the utterances. Experiment results show that 

MLLR adaptation performs better for very short enrollment 

utterances (with the length shorter than 2s) while MAP 

adaptation is more effective for longer utterances. 

 

Index Terms—emotion recognition, GMM supervector 

based SVM, MAP adaptation, MLLR adaptation 

 

1. INTRODUCTION 

 

Expressive speech with emotions plays important role in the 

communications between humans. Automatic recognition of 

emotion in speech has been one of the latest challenges in 

the field of speech processing. It has gained great interests in 

many practical application areas, such as detection of lies, 

security system, psychiatric aids and interactive games. It is 

also being integrated into a broad area of researches, such as 

human-computer interaction, emotional speech or speaker 

recognition, emotion recognition on visual speeches [1]. 

To recognize emotion from speech, a large number of 

acoustic features have been put forward. These features can 

be classified as prosodic features, spectral features and voice 

quality features. Prosodic features consist of statistics that 

are derived from the fundamental frequency (f0) and energy 

contours. Spectral feature mainly include features derived 

from Mel frequencies, such as Mel-frequency cepstral 

coefficients (MFCCs). Statistics of jitter, shimmer and 

harmonic-to-noise ratio (HNR) belong to voice quality 

features [1]. We highly concentrate on acoustic features 

commonly used in different literatures. Hu et al. provides 

MFCCs as features for emotional classification, or rather, 

13-dimensional MFCC plus energy, together with their delta 

and acceleration coefficients, 42 dimensions altogether [2]. 

In terms of model representation, hidden Markov model 

(HMM) and Gaussian mixture model (GMM) have achieved 

outstanding results on speech emotion recognition. Schuller 

et al. brought forward the feasibility of emotion recognition 

with hidden Markov models [3]. In [4], a method using 

phoneme-class dependent HMM classifiers with short-term 

spectral features was proposed. Luengo et al. believed that 

traditional GMM based emotional speech classifiers using 

spectral features could achieve a high accuracy [5]. 

Support vector machines (SVMs) have been proved to be 

able to achieve better performance for solving problems in 

classification, regression and novelty detection than many 

other classifiers. As the dimension of spectral features 

extracted from the speech utterances with various lengths is 

not fixed, a GMM supervector based SVM with spectral 

features was brought forward in [2]. The main idea is, the 

MFCCs extracted from each emotional speech utterance are 

used to train a GMM, and then the GMM supervector is 

constructed by concatenating the mean vectors of all the 

Gaussian mixtures in the GMM, and this GMM supervector 

is served as the input feature for SVM [2]. 

In our approach, we also adopt GMM supervector based 

SVM with spectral features for speech emotion recognition. 

In training the GMM, we use the adaptation technology that 

is widely used in speaker recognition to adapt a universal 

background model (UBM) to derive the final GMM for each 

emotion category. It is found that the length of the speech 

utterances used for adaptation is one of the key factors that 

affect the performance of the adapted GMM for recognizing 

emotions. Considering the requirement of the applications 

where only short speech utterances (with the length shorter 

than 5 seconds) are available (e.g. interactive dialog system), 

the adaptation algorithms that can be manipulated on short 

utterances are highly essential. Regarding this, in this paper, 

we compare two classical model adaptation methods the 

maximum a posteriori (MAP) and the maximum likelihood 



linear regression (MLLR) for GMM-SVM based emotion 

recognition, and try to find which method can perform better 

on different length of enrollment of speech utterances.  

The rest of this paper is organized as follows. In Section 

2, the GMM supervector based SVM system for emotion 

recognition is characterized. Then two different adaptation 

methods, MLLR and MAP are described in Section 3. 

Experiments and results are presented in Section 4. Finally, 

Section 5 gives the conclusions. 

 

2. GMM-SVM BASED EMOTION RECOGNITION 

 

In this work, GMM supervector based SVM (GMM-SVM) 

with spectral features is adopted for emotion recognition of 

speech. Details of the method are described as follows. 

 

2.1. GMM supervector based SVM system 

 

Assume that an utterance Y with only one kind of emotion is 

chosen, and the hypothesized emotion category is X, the task 

of speech emotion recognition is to determine if Y is of the 

emotion category X. Then the core function of emotion 

recognition can be described as a basic hypothesis test to 

evaluate which of the following two statements is true: 

 S0: Y is of the hypothesized emotion X, and 

 S1: Y is not of the hypothesized emotion X. 

The following likelihood ratio (LR) is calculated to examine 

the statements: 
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where p(Y|Si), i=0,1 is the probability density function of the 

statement Si evaluated for the speech utterance Y, θ is the 

given decision threshold for accepting or rejecting Si.  

The basic goal of a speech emotion recognition system is 

to determine techniques to compute values for the two 

likelihoods, p(Y|S0) and p(Y|S1). In this work, we adopt the 

GMM supervector based SVM (GMM-SVM) approach. The 

framework of the proposed emotion recognition system is 

illustrated in Fig.1. The input utterance is first processed by 

the front-end processing module to construct the GMM 

supervector, which is then used to compute the likelihoods 

of S0 and S1, where S0 is represented by an SVM model λhyp 

which characterizes the hypothesized emotion X and S1 is 

represented by another SVM model λUBM characterizing the 

universal backgrounds. The likelihood ratio is computed as 

follows and used to test against the threshold θ to make the 

final accept/reject decision. 
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Fig.1. Likelihood ratio based emotion recognition system 

 

2.2. Constructing GMM supervector 
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Fig.2. Constructing GMM supervector from an utterance 

 

The process of constructing the GMM supervector from an 

input emotional speech utterance is shown in Fig.2. 

The density function of a GMM is defined as following: 
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where N(;,) is the is the Gaussian density function, M is the 

number of Gaussian mixtures, wi, μi and Σi are the weight, 

mean and covariance matrix of the i-th Gaussian mixture 

respectively. The supervector of a GMM is defined by 

concatenating the mean of each Gaussian mixture, which can 

be thought of as a mapping between an utterance and a high-

dimensional vector: 
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Given an input emotional speech utterance, the spectral 

features are first extracted and used to adapt the GMM from 

a neutral universal background model (UBM). In this work, 

the UBM is a GMM that is trained using neutral speeches 

from a large number of speakers. The MAP or MLLR 

adaptation algorithm is used to adapt the GMM from neutral 

UBM for the input utterance, and during adaptation, only the 

mean vector μi of each Gaussian mixture is adapted. From 

the adapted GMM, the final GMM supervector is 

constructed as the representation of the input utterance. 

Details of the adaptation methods will be elaborated later in 

the next section. 

 

 

 



2.3. SVM 

 

An SVM is a non-probabilistic binary linear classifier, used 

for classification and regression analysis. An SVM model is 

a representation of the examples as points in space, mapped 

so that the examples of the separate categories are divided 

by a clear gap that is as wide as possible. New examples are 

then mapped into that same space and predicted to belong to 

a category based on which side of the gap they fall on. 

SVM performs a non-linear mapping from an input space 

to a high-dimensional space through a kernel function K(,). 

The SVM classifier is constructed from sums of the kernel 

function: 
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where ti is the ideal output with value either 1 or -1, 

depending on whether the corresponding support vector is in 

class 0 or class 1, respectively. 
1

0
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vectors xi are support vectors. The classification result is 

depended on if f(x) is above or below a given threshold. 

For simplicity, the linear kernel is selected in the GMM 

supervector based SVM for speech emotion recognition. 

 

3. ADAPTATION METHODS 

 

Two classical model adaptation methods are investigated to 

adapt the GMM from neutral UBM for the input utterance, 

namely maximum likelihood linear regression (MLLR) and 

maximum a posteriori (MAP). 

 

3.1. Maximum Likelihood Linear Regression 

 

Maximum likelihood linear regression (MLLR) computes a 

set of transformations that reduce the mismatch between an 

initial model set and the adaptation data. The model is 

adapted using a set of linear transformations for the mean 

(and variance) parameters of a Gaussian mixture model, 

estimated in a maximum likelihood fashion from the 

adaptation data. The effect of these transformations is to 

shift the means (and alter the variances) of each Gaussian 

mixture in the initial model so that the adapted Gaussian 

mixture is more likely to generate the adaptation data.  

The transformation matrix used to give a new estimate of 

the adapted mean is found by 

ˆ W                                              (6) 

where W is the n×(n+1) transformation matrix (where n is 

the dimensionality of the data) and ξ is the extended mean 

vector, 

 
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where w represents a bias offset whose value is fixed at 1. 

Simply W can be decomposed into 

 W b A                                         (8) 

where b is a bias vector on the mean and A represents an 

n×n transformation matrix that may be full, block diagonal 

or diagonal. 

The target is to find the transformation matrix W which 

maximizes the likelihood of the adaptation data. W can be 

obtained by solving a maximization problem using the 

Expectation-Maximization (EM) algorithm, which is also 

used to compute the variance transformation matrix. In this 

work, only the mean vector of the GMM is adapted. 

 

3.2. Maximum A Posteriori 

 

Model adaptation can also be accomplished by maximum a 

posteriori (MAP) approach, which is sometimes referred to 

as Bayesian adaptation. MAP adaptation involves the use of 

prior knowledge about the model parameter distribution. If 

we know what the parameters of the model are likely to be 

(before observing any adaptation data) using the prior 

knowledge, we might be able to make good use of the 

limited adaptation data, to obtain a decent MAP estimate. 

This type of prior is often termed an informative prior. It 

should be noted if the prior distribution indicates no 

preference as to what the model parameters are likely to be 

(a non-informative prior), the MAP estimate obtained will 

be identical to that obtained using a maximum likelihood 

approach. 

Assume that we want to estimate an unobserved 

parameter μ on the basis of observation x. Let f be the 

sampling distribution of x, so that f(x|μ) is the probability of 

x when the underlying population parameter is μ. Then 

assume that a prior distribution g exists. Hence μ can be 

treated as a random variable as in Bayesian statistics. The 

method of maximum a posteriori estimation then estimates μ 

as the mode of the posterior distribution of this random 

variable: 

ˆ arg max ( | ) ( )MAP f x g
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For mathematical tractability conjugate priors are used, 

which results in a simple adaptation formula. The update 

formula for the i-th Gaussian mixture is: 

,
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where 
i

  is the mean of one emotion and 
i

  is the mean of 

the observed adaptation data, or universal background. The 

universal background model (UBM) is trained from the 

database using Expectation–maximization (EM) algorithm. 

And β is the adjusting coefficient given by prior knowledge 

or calculated during the adaptation procedure. 

 

3.3. Comparison between MLLR and MAP 

 

One obvious drawback of MAP adaptation is that it requires 

more adaptation data when compared to MLLR, because 

MAP adaptation is specifically defined at the Gaussian 

mixture level. When larger amounts of adaptation training 



data become available, MAP begins to perform better than 

MLLR, due to this detailed update of each Gaussian mixture 

(rather than the pooled Gaussian transformation approach of 

MLLR). In fact the two adaptation processes can be 

combined to improve performance further, by using the 

MLLR transformed means as the priors for MAP adaptation. 

In this case Gaussian mixtures that have low occupation 

likelihood in the adaptation data (and hence would not 

change much using MAP alone) have been adapted using a 

regression class transform in MLLR. 

 

4. EXPERIMENTS 

 

4.1. Databases 

 

Two emotional databases are used in the experiments of our 

work. The first one is the famous Berlin German emotional 

database [11], which contains about 500 utterances spoken 

by 10 actors in 7 emotional categories (i.e. joy, anger, fear, 

sadness, bored, disgust as well as neutral). The data were 

taken with the sampling rate of 48 kHz and downsampled to 

16 kHz. The average length the speech recordings is 2.78s. 

The second one is our homegrown Chinese emotional 

database, which contains 5 kinds of emotions, including four 

classic emotions (anger, fear, happiness and sadness) and 

neutral. 464 voice clips of the Chinese emotional speech 

database were interceptions from movies and TV series, 

with an average length of 3.16s. The data were digitized 

using a sampling rate of 16 kHz with 16-bit resolution, and 

saved in single channel wav files. 

 

4.2. Experiments 

 

The recordings from the databases are converted into 13-

dimensional Mel frequency cepstral coefficients (MFCC) 

plus energy, together with their delta and acceleration 

coefficients, forming 42-dimentional acoustic features. The 

features are extracted every 10ms using the frame length of 

25ms, with Hamming windowing and pre-emphasis factor of 

0.97. The Gaussian mixture model (GMM) consists of 64 

Gaussian mixtures. The neutral universal background model 

(UBM) is trained from the neutral speech recordings in the 

speech database as described above.  

In the experiments, 5-fold cross validation is performed 

for error estimation. More precisely, each of the emotional 

databases described above is equally divided into 5 disjoint 

subsets, and the SVM classifiers are trained five times, each 

time with a different subset held out as a testing set. 

To evaluate the performances of the two different 

adaptation methods and their relation with the length of the 

input speech utterances, three datasets of the utterances are 

created and used in the experiments. The first dataset 

consists of the original speech recordings. The other two 

datasets are created by cutting each utterance of the original 

speech recordings into two parts with shorter average length. 

For the Berlin German emotional database, the average 

lengths of the utterances of the two newly created datasets 

are 1.85s and 1.39s respectively. While for the homegrown 

Chinese emotional database, the average lengths are 2.11s 

and 1.58s respectively. 

 

4.3. Results 

 

The hit rate, the ratio of the number of utterances correctly 

recognized to the total number of all available utterances, is 

calculated for evaluating the experiment. 

#

#

of correctly recognized utterances
HitRate

of all utterances
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
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    (11) 

The hit rates of the experiments on three different datasets 

using MLLR or MAP adaptation are summarized in Table 1 

and Table 2 for the Berlin German emotional database and 

the Chinese emotional database respectively. 

 

Table 1. The hit rates (HitRate) over 3 datasets using 

MLLR or MAP adaptation for the Berlin German database 

Dataset 1 2 3 

Average length 2.78s 1.85s 1.39s 

MLLR adaptation 76.6% 77.6% 70.1% 

MAP adaptation 80.4% 72.0% 67.3% 

 

Table 2. The hit rates (HitRate) over 3 datasets using 

MLLR or MAP adaptation for the Chinese database 

Dataset 1 2 3 

Average length 3.16s 2.11s 1.58s 

MLLR adaptation 76.6% 74.5% 68.1% 

MAP adaptation 84.0% 76.6% 58.5% 

 

From the above tables, we could find that in the GMM-

SVM based emotion recognition system, MAP adaptation 

performs well when the utterances are relatively long; while 

MLLR adaptation can achieve better performance when the 

input utterance is with short duration. For the Berlin German 

emotional database, MAP adaptation can achieve better 

performance than MLLR adaptation for the dataset with the 

average length of 2.78s. While for the Chinese emotional 

database, MAP adaptation outperforms MLLR adaptation 

for the dataset with the average length of both 3.16s and 

2.11s. 

To find the correlations between the performance of the 

two adaptation methods and the length of the input speech 

utterances, the hit rates on the utterances with different 

lengths varying from 1s to 3.5s are further evaluated for the 

two adaptation methods. The inferiors of the hit rates of the 

MLLR adaptation compared to MAP adaptation on the 

utterances with different lengths are shown in Fig.3, where 

each point indicates the inferior of the hit rate of the MLLR 

adaptation to that of the MAP adaptation. The inferior of the 

hit rates is computed as: 



inferior MAP MLLRHitRate HitRate HitRate       (12) 

And the hit rates for MAP and MLLR are computed on all 

utterances with the length within 0.25s around the indicated 

length. For example, the hit rate inferior -31.8% (at 1s) is 

computed using the utterances with the length from 0.75s to 

1.25s. The hit rate inferior less than 0 indicates the 

performance of MLLR adaptation method is better than 

MAP method. The lower is the hit rate inferior; the better is 

the performance of the MLLR adaptation method. The 

results in Fig.3 indicate that MLLR adaptation achieve 

higher hit rate on very short-enrollment utterances, (e.g. the 

hit rate of the MLLR is 31.8% higher than those of the MAP 

for speech utterances of the length at around 1 second), 

while MAP performance better on long-enrollment 

utterances. It can also be observed that MAP adaptation 

performs better then MLLR adaptation when the utterances 

are longer than 2s. 

 
Fig.3. Hit rates on utterances with different lengths using 

MLLR adaptation inferior to MAP adaptation, where the 

asterisk indicates the hit rates on German database while 

square shows the hit rates on Chinese database 

 

5. CONCLUSION 

 

In the GMM supervector based SVM approach for speech 

emotion recognition, the adaptation technique that is widely 

used in speaker recognition has been adopted to adapt a 

UBM in delivering the final GMM for each emotion. It is 

found that the length of the speech utterances used for 

adaptation is one of the key factors that affect the 

performance of the adapted GMM for recognizing emotions. 

Considering the requirement of the applications where only 

short speech utterances (with the length shorter than 5 

seconds) are available (e.g. interactive dialog system), the 

adaptation algorithms that can be manipulated on short 

utterances are highly essential. Regarding this, this paper 

compares two classical model adaptation methods, the 

maximum a posteriori (MAP) and the maximum likelihood 

linear regression (MLLR), for GMM-SVM based emotion 

recognition, and tries to find which method can perform 

better on different length of enrollment of speech utterances 

within 4 seconds. It is found that MLLR outperforms MAP 

adaptation when utterances were shorter than 2s, and MAP 

adaptation is a bit better than MLLR while the utterances are 

longer. 
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