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ABSTRACT
Dynamic music emotion prediction is to recognize the continuous
emotion information in music, which is necessary for music re-
trieval and recommendation. In this paper, we adopt the dimen-
sional valence-arousal (V-A) emotion model to represent the dy-
namic emotion in music. In our opinion, music and V-A emotion
label do not have the one-to-one correspondence in the time do-
main, while the expression of music emotion at one moment is the
accumulation of previous music content for a period of time, so
we propose Long Short-Term Memory (LSTM) based sequence-to-
one mapping for dynamic music emotion prediction. Based on this
sequence-to-one music emotion mapping, it is proved that differ-
ent time scales’ preceding content has an influence on the LSTM
model’s performance, so we further propose the Multi-scale Con-
text based Attention (MCA) for dynamic music emotion prediction.
We evaluate our proposed method on the database of Emotion in
Music task at MediaEval 2015, and the results show that our pro-
posed method outperforms most of the models using the same fea-
tures and achieves a competitive performance with the state-of-
the-art methods.

CCS CONCEPTS
• Applied computing → Sound and music computing; • In-
formation systems → Music retrieval; • Computing method-
ologies → Machine learning;
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1 INTRODUCTION
As an important art form, music plays an important role in our
daily life. Emotion, as the core ofmusic, is whatmusicians or singers
want to express through music. Emotion prediction is an impor-
tant component of music information retrieval, which can provide
a new trait for music retrieval and offer suitable personalized ser-
vice according to user’s mental state inmusic recommendation and
therapy.

Due to the complexity and temporal variation of emotions in
music, it may be ambiguous and inaccurate to mark a piece of mu-
sic with one single annotation. Therefore, to depict the flow of emo-
tions expressed in music, dynamic emotion prediction need to be
done along the music. Besides, to be more precise, instead of tak-
ing it as classification, we adopt the dimensional Valence-Arousal
(V-A) emotion model proposed by Russel to map emotion into 2D
space [20], which is a regression problem.

In the past few years, the research of dynamic music emotion
prediction has made great progress. Considering the temporal con-
tinuity of music, the mainstream emotion prediction model has
changed from traditional machine learning technology to time se-
quential model, such as Recurrent Neural Network (RNN) [19, 23],
Long Short-Term Memory (LSTM) [10, 12]. Based on these time
sequential models, some researchers further improve the perfor-
mance by attempts to capture the hierarchical structure informa-
tion in music, a deep bidirectional LSTM (DBLSTM) model based
multi-scale fusion method is proposed, in which DBLSTM models
trained with feature sequences of different scales are considered to
contain music structure information [15, 16].

However, in the existingmethods, both the typicalmachine learn-
ing methods and time sequential models take this problem as a
one-to-onemapping from acoustic features to emotion labels, even
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though sequential model considers contextual information in the
process of mapping. In our opinion, there is no one-to-one or di-
rect relationship between music and V-A emotion label in the time
domain. Limited by the psychological and physiological capability
of annotators, a specific time point’s annotation can be highly in-
fluenced by the music before that time point, i.e. the emotion in
music at a specific time is the accumulation of a short piece of mu-
sic before that point.

The recent development in attentionmechanism, which attracts
wide notice, adds another functionality to the RNN architecture
specifically to address the problem that the sequences of input
and output are not synchronized. Attention mechanism was first
proposed in the field of computer vision [18], but it really draws
people’s attention by making progress in neural machine transla-
tion [4, 17], which accomplishes translating and aligning at the
same time and solves the problem of long sentence’s translation
well.

Attention mechanism was also applied to other deep learning
application fields. In speech recognition, some researchers adopted
attentionmechanism to build an end-to-endHidden-Markov-Model-
free (HMM free) recognition system [5], which helps streamline
the training procedures, while some others utilize attentionmecha-
nism to capture future context for unidirectional LSTM, which gets
the similar performance to bidirectional LSTMwithout the time de-
lay [21]. In speech emotion recognition, attention represents the
uneven distribution among frames containing emotional informa-
tion [14]. In [13], the author proposed a new use of attention to
fuse information across different modalities for video description.

In this paper, we propose a Multi-scale Context based Attention
(MCA) model for dynamic music emotion prediction, of which the
scale is a new use of attention mechanism: to give different time
scales’ preceding context respective attention weights. As we men-
tioned above, the music emotion at a specific time is the accumu-
lation of a piece of music content before that time point. As we
cannot verify how much previous content is suitable for the emo-
tion prediction, we pay different attention to the previous context
of different time scales, where the weights of different scales are
dynamically computed by the model. We believe that multi-scale
models fused with attention can learn the deep representation of
music structure dynamically, which will utilize characteristics of
different time scales of music, leading to a better performance.

It is worth mentioning that the DBLSTM-based multi-scale fu-
sion method [15] also proposed to utilize information of different
time scales, the difference between it and our proposed method
is that, firstly, our method is a sequence-to-one mapping while
the DBLSTM-based multi-scale fusion method is a sequence-to-
sequence mapping in essence, and that, secondly, DBLSTM-based
fusion method trains model in two steps, training DBLSTM and fu-
sion model separately, while our MCAmethod accomplishes train-
ing in one process. What’s more, in our opinion, different kinds
of emotion have different means of expression, some emotion’s ex-
pression may last for a period of time, while some other’s may be
quite shorter, so Multi-scale Context based Attention method can
model the expression of music emotion better.

To bemore specific, in the overall architecture of dynamicmusic
emotion prediction, our proposed attention mechanism lies in a
higher level than ordinary models such as RNN or LSTM, which is

independent of underlying models, and could be considered as an
attention method for blending inputs of different time scales.

The rest of this paper is organized as follows. Section 2 intro-
duces the related work. Section 3 describes theMulti-scale Context
based Attention (MCA) model we proposed. Section 4 provides ex-
periment settings and process. Section 5 gives the experimental
results and analysis. Finally, we give the conclusions drawn from
the experiments and some possible future work in Section 6.

2 RELATEDWORK
Dynamic music emotion prediction has attracted much attention,
many efforts have been done in this field recently. The traditional
machine learningmethods, such asMultiple Linear Regression (MLR) [7],
Support Vector Regression (SVR) [8], have been applied in solving
this problem. Yang and Cai consider the labeling process as a con-
tinuous conditional random field (CCRF) process, where the V-A
values not only depend on the specific music segment’s acoustic
content, but also their preceding segments, so the CCRF model
with SVR as the base classifier is adopted to model continuous
emotions in dimensional space [6]. Considering the context infor-
mation, LSTM model makes a breakthrough at Emotion in Music
task at MediaEval 2014 [10].

In [15, 16], the authors propose a DBLSTM-based multi-scale fu-
sionmethod for dynamicmusic emotion prediction, in the first step
of which, different scales’ DBLSTM models are trained to predict
Valence (or Arousal), and in the second step, the first step’s results
of Valence (or Arousal) are combined as feature to predict the final
Valence (or Arousal) value. The authors interpret that music has
contextual continuity and hierarchical structure, which can influ-
ence the flow of emotion in music. DBLSTM models can capture
contextual information while different time scales contain various
emotion information, which can be associated with the structure
of music, so this method can utilize both contextual information
and hierarchical structure of music.

In [24], the authors analyse the music emotion prediction prob-
lem from the perspective of emotion space. The authors separately
calculate the standard deviation of V-A values within a song and
among a number of songs, and found that the latter is 10 times
larger than the former one. Based on the analysis result, emotion
is decoupled to two scales: global scale and local scale, global-scale
emotion dynamics can be seen as the base platform of music emo-
tion, and local scale can be seen as small changes on the platform.
Then a double-scale SVR method is proposed to predict global-
scale and local-scale emotion dynamics. The authors point out that
their error in the experiment mainly comes from the prediction of
global-scale emotion dynamics.

Attention mechanism first makes a breakthrough in Neural Ma-
chine Translation (NMT) [4, 17]. TheNMTproblem generally adopts
the encoder-decoder architecture to accomplish the sequence to se-
quence mapping, where the input and output sequence may have
different lengths and then encoder and decoder are constructed
as two separate RNN networks. Before the proposal of attention
mechanism, the encoder RNN network encodes the source text se-
quence to a fixed dimensional vector, which is called context vector,
then the decoder RNN network decodes the whole target text se-
quence from the context vector. This processing method requires



the context vector contains all the information in the source text se-
quence, which is problematic, especially for the translation of long
sentences. As the target word in the output sequence is only rele-
vant to some specific words in the input sequence, attention mech-
anism aims to select the relevant encoded hidden vectors through
an informative sequence of weights, called the attention weights,
and the context vector is the weighted sum of the encoded hidden
vector sequence.

In [14], the authors take speech emotion recognition as a sequence-
to-one learning problem, themotivation of applying attentionmech-
anism is that the emotion information is not evenly distributed
in the utterance, where some frames contain significant emotion
information, while others may not. Attention mechanism tries to
make the emotion-significant hidden vectors contribute a major-
ity portion to the construction of context vector, while the effect
of the irrelevant ones is minimized through the attention weights.

In [13], the authors adopt an attention-based multimodal fusion
method for video description, which is similar to our idea. They
propose to expand the attention model to selectively attend to spe-
cific modalities such as image features, motion features, and audio
features. One big difference between our model and theirs is that
ours can utilize different scales of input feature and exploit the
deeper structure of data sequences. Besides, their models and ours
can both be adopted in one framework as they are in different stage
of the process.

3 PROPOSED METHOD
For eachmusic clip, we have a feature sequenceX =< x1,x2, ...,xT >,
the annotation of ValenceV =< v1,v2, ...,vT >, and that of Arousal
A =< a1,a2, ...,aT >,whereT is the length of music clip scaling in
the time granularity of labeling. DenoteXl

t =< xt−l+1,xt−l+2, ...,xt >,
and define the sequence-to-one mapping of LSTM model,

ylt = LSTM(Xl
t ) (1)

where l is the length of feature sequence input into LSTM model,
representing the scale of LSTM model, and ylt is the t-th predic-
tion value in the prediction sequence given by LSTM considering
the preceding l feature vectors before t . LSTM model can also be
replaced by attention-based LSTM (A-LSTM) model.

Based on the result of LSTM or A-LSTM model, the Multi-scale
Context based Attention (MCA) model can be represented as:

yt = MCA
(
yl1t ,y

l2
t , ...,y

lN
t

)
= MCA

(
LSTM(Xl1

t ), LSTM(Xl2
t ), ..., LSTM(XlN

t )
)

(2)

where N is the number of time scales and yt is the result of MCA
model which utilizes the information from different scales’ preced-
ing context.

In the following of this Section, Section 3.1 shows single scale
LSTMmodel, which contains the LSTMmodel and A-LSTMmodel.
In Section 3.2, the proposed MCA model using LSTM or A-LSTM
is introduced.

3.1 Single scale Long Short-Term Memory
Long Short-Term Memory. Long Short-Term Memory (LSTM)

is a functionally powerful sequential model, which is a redesign of
Recurrent Neural Network (RNN). By adding input, forget, output
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Figure 1: Framework of LSTM

gates to the memory block, LSTM is better at exploiting and stor-
ing information for longer periods of time compared to RNN. We
utilize LSTM to perform a sequence-to-one mapping, the decod-
ing process is proceeded based on the last hidden vector. Figure 1
shows the process of LSTM containing 5 time steps. For each time
step t

′
in the process,

ht ′ = LSTM(ht ′−1,xt ′ ), (3)

where the LSTM function is computed as

LSTM(ht ′−1,xt ′ ) = ot ′ tanh(ct ′ ), (4)

where
ot ′ = σ (Wxoxt ′ +Whoht ′−1 + bo ) (5)

ct ′ = ft ′ct ′−1 + it ′ tanh(Wxcxt ′ +Whcht ′−1 + bc ) (6)

ft ′ = σ (Wxf xt ′ +Whf ht ′−1 + bf ) (7)

it ′ = σ (Wxixt ′ +Whiht ′−1 + bi ), (8)
where σ () is the element-wise sigmoid function, and it ′ , ft ′ , ot ′
and ct ′ are respectively the input, forget, output gate and the cell
activation vectors for the t

′
-th input vector, the weight matrices

Wzz and the bias vectors bz are identified by the subscript z ∈{
x ,h, i, f ,o, c

}
.

The prediction of Valence or Arousal is based on the last time
step’s hidden vector ht

yt = tanh(Whvht + bv ). (9)

Attention-based LSTM. The basic idea of attentionmechanism
based LSTM (A-LSTM) model is to select relevant encoded hid-
den vectors through an informative sequence of weights, which
are called attention weights, in the decoding phase. This mecha-
nism coincides with the characteristic of music emotion’s expres-
sion that emotion is not evenly distributed in music and only some
moments in music arouse people’s emotion response strongly. The
average of encoded hidden vectors’ sequence can be seen as a spe-
cial case of attention mechanism, i.e. uniform attention or non-
attention. In speech emotion recognition, it has been proved that
uniform attention is a better processing method than only taking
the one at the last time step [14], so the attentionmechanismwhich
gives different encoded hidden vector different weight is more rea-
sonable.

Figure 2 is the schematic of A-LSTM modified from the basic
LSTMmodel in Figure 1. The difference betweenA-LSTMand LSTM
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Figure 2: Framework of attention-based LSTM

is that in the phase of predicting Valence-Arousal, attention-based
LSTM replaces ht with ct in Eq.9

yt = tanh(Whvct + bv ), (10)

where ct is the weighted sum of encoded hidden vectors, which
can be computed as

ct =
l∑

t ′=1

αt ′ht ′ , (11)

where

αt ′ =
exp
(
et ′
)

∑l
t ′=1

exp
(
et ′
) (12)

et ′ = tanh(WAht ′ + bA ), (13)

where αt ′ is the computed attention weights,
∑l
t ′=1

αt ′ = 1.WA,
bA are the parameter matrix and bias in the attention functionality.
l is the length of input sequence, i.e. the length of preceding context
sequence.

3.2 Multi-scale Context based Attention model
We extend attention mechanism to multi-scale context fusion. As
we proposed that the expression of music emotion at a moment
is the accumulation of the previous context before that moment
in music, the scale of the previous context can influence the pre-
diction of music emotion. There is no conclusion about how much
previous context is most beneficial to the prediction of emotion, so
we propose theMulti-scale Context based Attention (MCA), let the
model choose by itself, giving larger weights to the relevant con-
text vectors while minimizing that of the irrelevant context vec-
tors.

Figure 3 shows the architecture of MCAmodel. Attention mech-
anism is applied to the context vectors of LSTMmodels with differ-
ent scales. The LSTMmodel can be replaced by A-LSTMmodel de-
scribed in Section 3.1. If so, the context vector is the weighted sum
of the hidden vectors. If not, the context vector is the last hidden
vector of LSTM model. Compared to some simple fusion methods,
where the context vectors from the same sub-network share the
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Figure 3: Framework ofMulti-scale Context based Attention
model

same weights independent of the context vectors, in MCA model
the attentionweights change according to the context vector (Eq.16
and Eq.17), which can better model the expression of emotion in
music. With the MCA model, the prediction of Valence-Arousal is
based on the weighted sum of multi-scale context vectors, instead
of the context vector from a single time scale:

yt = tanh (Whvmt + bv ) , (14)

where mt is the fusion result, the weighted sum of multi-scales’
context vectors, which can be computed as

mt =

N∑
i=1

βitc
i
t , (15)

where

βit =
exp
(
eit
)

∑N
i=1 exp

(
eit
) (16)

eit = tanh(WFAc
i
t + bFA ), (17)

whereWFA, bFA are the parameter matrix and bias, and N is the
number of time scales, which is specified in the experiment. cit is
the context vector of the i-th time scale, and βit is the correspond-
ing attention weight.

If β1t = β2t ... = βNt = 1/N , the method degenerates to a multi-
scale average fusion, which becomes a special case of attention
mechanism, i.e. uniform MCA.

4 EXPERIMENT SETTINGS
4.1 Data collection and annotation
The data we use comes from the Emotion in Music at MediaEval
2015 [3], and the training and test sets of our experiments are the
same as other participants’ in the task. The training set contains
431 music clips of 45 seconds from different songs, extracted from
random (uniformly distributed) start point of a song. The test set
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Figure 4: Data preparation for MCA training

consists of 58 complete songs with an average duration of 234 ±
105.7 seconds.

Arousal and Valence were annotated separately for each song
in the training and test set by 5-7 annotators, who listened to the
entire song before annotation in order to get familiar with the mu-
sic and reduce the reaction time lag. The temporal resolution of
annotation was 500 ms. Since the dynamic annotations of the first
15 seconds of each song or clip were not stable, they were not pro-
vided by the organizers of the task. The Cronbach’s α of training
set is 0.76±0.12 for Arousal, and 0.73±0.12 for Valence, while that
of test set is 0.65± 0.28 for Arousal, and 0.29± 0.94 for Valence [3].

4.2 Feature extraction
Our experiments use the baseline universal feature set from the
organizers of MediaEval 2015 [3]. The features are extracted with
the openSMILE toolbox [11], consisting of means and standard
deviations of 65 low-level acoustic descriptors (LLDs) and their
first-order derivatives in non-overlapping segments of 500 ms. The
LLDs contain energy-related LLDs (e.g. RMS energy, zero-crossing
rate, and etc.), spectral LLDs (e.g. Mel Frequency Cepstral Coeffi-
cients, Spectral flux, centroid, entropy, slope, and etc.) and voicing
related LLDs (e.g. pitch, Prob. of voice, Log. HNR, and etc.), which
are extracted using the openSMILE toolbox with a frame size of 60
ms and a frame shift of 10 ms.

All features have been normalized to zero mean and unit vari-
ance in advance.

4.3 Model training
Data preprocessing. In order to obtain input features of differ-

ent scales, we apply multiple sliding windows of different size but
of the same stride on the input features extracted in Section 4.2.
Taking features of two scales for instance, two sliding windows
contain 5 frames and 10 frames respectively, but both step forward
once by 1 frame. Thus, these two segments of input features share
the same annotation at each specific point.

Considering the acoustic property of music and its emotional
influence upon people, we decide to adopt three different window
sizes, which are 5, 10, and 20 frames long (i.e. 2.5, 5, and 10 seconds
respectively), and all step forward once by one frame, as illustrated
in Figure 4.

Specifically, as mentioned in Section 4.1, the input music data
provided by MediaEval 2015 contains 15-second-long unlabeled
music data before the labeled ones, which cannot be used directly

in training process. However, features extracted from these seg-
ments still hold the potential information of music emotion, which
are bases of subsequent labeled data and naturally can be used in
generating different scales of data. Therefore, edge cases needn’t
be handled specially.

LSTM Training. In our experiments, LSTMmodels are trained
for Valence and Arousal separately. In order to find the best model
hyper-parameters (hidden units, layer numbers, etc.), we randomly
select 50 music clips from training set for validation.

The weights in LSTM layers are initialized randomly with zero
mean and different standard deviations, which are also hyper-parameters
to be determined. Attention length of LSTM equals to the length
of input scales (5, 10, 20 frames respectively). Models are trained
with RMSProp algorithm [22], whose initial learning rate is 0.005.
The training is stopped after 50 epochs, each of which means one
full iteration of input data.

To avoid over-fitting, half of LSTM cells might be dropped out
randomly. L2 regularization term of weight matrix is also added
to training loss. In addition, training data are randomly shuffled in
each epoch.

In order to alleviate the fluctuation of model output, a 25-frame-
long triangle filter is applied to the output sequence of each music,
as a post processing step to smooth out the random noise.

All models are implemented and trained with TensorFlow [1].
The best model hyper-parameters of each set of experiments are
selected based on validation set’s loss and then evaluated on the
test set.

5 RESULTS AND DISCUSSION
To demonstrate the effectiveness of Multi-scale Context based At-
tention model, we’ve done three sets of experiments, which are
single scale’s LSTM models, uniform MCA and MCA respectively.
The prediction accuracy is evaluatedwith RMSE (rootmean square
error) on the test set.

In all of the following tables, A-LSTM represents attention-based
LSTM model. h is the hidden size of each layer. n represents the
number of hidden layers and l represents the length of feature se-
quence which is the input of LSTM models. Each row of tables
represents one set of experiments, and the model size shown is the
best model selected according to the validation set’s loss. Thus, the
model size of each row of tables may vary.

5.1 Performance of single scale LSTM
Table 1 and Table 2 show the RMSE results of Valence and Arousal
of single scale LSTM models respectively.

First, we compare the performance of LSTMmodel and attention-
based LSTM (A-LSTM) model from Table 1 and Table 2. In Ta-
ble 1, we can see that for Valence, if the sequence length is 10 or
20, adding attention functionality to LSTM model can greatly im-
prove the model’s performance, while the attention-based LSTM
model performs poorer than LSTM model if the sequence length
is 5. Table 2 shows that for Arousal, adding attention functionality
achieves a little worse result for any sequence lengths.

Second, we observe the performance variation along with the
change of the sequence length of attention-based LSTMmodel and
LSTM model separately. For Valence, the difference of sequence



Table 1: Valence RMSE of single scale model

l Model Model Size RMSE

5
LSTM h=200, n=3 0.358

A-LSTM h=200, n=2 0.366↑

10
LSTM h=200, n=4 0.352

A-LSTM h=200, n=2 0.308↓

20
LSTM h=100, n=4 0.355

A-LSTM h=100, n=2 0.294↓

Table 2: Arousal RMSE of single scale model

l Model Model Size RMSE

5
LSTM h=200, n=4 0.244

A-LSTM h=100, n=2 0.255↑

10
LSTM h=100, n=4 0.261

A-LSTM h=100, n=2 0.268↑

20
LSTM h=200, n=3 0.268

A-LSTM h=100, n=2 0.272↑

Table 3: Valence RMSE of multi-scale model

Method Model Model Size RMSE

uniform MCA
LSTM h=100, n=3 0.382

A-LSTM h=100, n=3 0.292

MCA
LSTM h=100, n=2 0.357

A-LSTM h=150, n=3 0.291

length does not influence the performance of LSTM models, and
for Arousal, LSTM model performs worse along with the increase
of sequence length. As for attention-based LSTM model, with the
increase of sequence length, the RMSE error of Valence is reduced
while that of Arousal increases. Our experiments indicate the dif-
ferent trends of variation of Arousal and Valence while changing
sequence length, which coincides with the results in the DBLSTM-
based multi-scale fusion method [15]. In our view, this experimen-
tal result is related to the nature of Valence and Arousal, as Valence
represents positive or negative emotion and Arousal describes the
energy of emotion.

5.2 Performance of MCA models
We compare our proposed model, Multi-scale Context based Atten-
tion (MCA) model, with the uniform MCA defined in Section 3.2.
The uniform MCA is a special case of attention mechanism, which
takes music segments of different time scales and average them
uniformly and constantly, so we call it uniform MCA.

Table 4: Arousal RMSE of multi-scale model

Method Model Model Size RMSE

uniform MCA
LSTM h=100, n=2 0.257

A-LSTM h=100, n=2 0.270

MCA
LSTM h=100, n=2 0.260

A-LSTM h=150, n=2 0.241

Table 5: RMSE of different regression models

Model Valence Arousal

MLR [3] 0.366 0.270

SVR [8] 0.366 0.255

LSTM [9] 0.373 0.242

RNN+smooth [19] 0.365 0.247

SVR+CCRF [6] 0.343 0.241

GPR [2] 0.295 0.285

DBLSTM+ELM [16] 0.318 0.239

DBLSTM based multi-scale fusion [15] 0.285 0.225

From Table 3 and Table 4 we can find that, our proposed MCA
model using A-LSTM outperforms uniformMCAmodel in Valence
and Arousal, especially in Arousal. This result supports our as-
sumption that multi-scale models fused with attention can utilize
different time scales’ characteristics of music and learn the deep
representation ofmusic structure dynamically, which enhances the
model performance to some extent.

In addition, MCA model using A-LSTM (Table 3, Table 4) also
has better performance compared to single scale ones (Table 1, Ta-
ble 2) in both Valence and Arousal, indicating that different seg-
ment lengths of music may contain different potential information
for emotion analysis. Therefore, fully utilizing the information of
different scales leads to a better emotion prediction result.

5.3 Experimental results of related work
The results in Table 5 come from the Emotion in Music task atMedi-
aEval 2015 using the same dataset and baseline features mentioned
above, so the models below are comparable to ours.

The MLR (Multiple Linear Regression) method is provided by
the organizers of MediaEval 2015 [3]. The SVR (Support Vector
Regression) method uses Radial Basis Function (RBF) kernel func-
tion [8]. The LSTM method uses a deep LSTM-RNN with 3 hid-
den layers [9]. The RNN+smooth method performs the regression
with a RNN of 10 hidden units and smoothing with a moving av-
erage filter [19]. The SVR+CCRF method adopts the Continuous
Conditional Random Field model with SVR as the base classifier to
model continuous emotions [6]. The GPR method uses Gaussian
Processing regression to predict the emotion per segment [2]. The
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Figure 5: Valence RMSE of all models

DBLSTM+ELM model uses Extreme Learning Machine (ELM) to
fuse the results of DBLSTM models with different scales [16]. The
DBLSTM based multi-scale fusion method proposes a multi-scale
fusion model based on deep bidirectional LSTM, which achieves
the best RMSE on Valence and Arousal [15].

5.4 Discussion
We’ve merged the results of all tables to figures (Figure 5 for Va-
lence, and Figure 6 for Arousal) to be more intuitive. If we just ex-
amine the first three orange bars (A-LSTM of single scale models)
of the figures, we can find that the increasing of sequence length
can enhance the performance of Valence, though weaken that of
Arousal. This could be on account of the different characteristic of
Valence and Arousal. Valence relies more on long-term influence
of input while Arousal relies more on short-term influence. If ex-
amining all of the bars of Arousal, one obvious finding is the right-
most bars of figures, i.e. our proposed MCA model using A-LSTM,
outperforms single scale models and uniform MCA models.

As we can see from figures and tables, performance gain in Va-
lence is not somuch as that in Arousal. In our opinion, this could be
account for the following reasons: First, Valence is actually harder
to predict than Arousal, which can be discovered through the fact
that all Valence results are worse than Arousal results. Second,
the test set’s annotation of Valence has a poorer inter-annotation
agreement than that of Arousal [3], which could influence our re-
sults to some extent.

When compared to state-of-the-art models, ourmodel surpasses
the performance of all single models, except the DBLSTM based
multi-scale fusion one, which exploits the information contained
in multiple models and blend them to gain a better performance.
Thus, it comes as no surprise that our proposed model performs a
little bit worse in comparison.

Besides, the DBLSTM based multi-scale fusion model has some
advantages for ours to incorporate: First, we’ve only utilized the
preceding content of the sequence, without using the subsequent
content, which can still hold potential information of music emo-
tion. Second, our MCA model might lack the correlation in the
emotion label sequence, whichmeans that the inner states of LSTM
model in different sequences of same music may not be consistent,
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Figure 6: Arousal RMSE of all models

as our model is a sequence-to-one mapping, instead of sequence-
to-sequence. These two differences could explain the little gap be-
tween the performance of DBLSTM-basedmulti-scale fusionmethod
and ours. We would like to address them in future.

6 CONCLUSION
In this paper, we propose a Multi-scale Context based Attention
(MCA) model for dynamic music emotion prediction and compare
the performance of our model with single scale models and uni-
formMCAmodels. The results show that ourMCAusing attention-
based LSTM outperforms most of the models using same features
and achieves a competitive performance with the state-of-the-art
methods. Ourmodel obtains themapping from a sequence of acous-
tic features to one emotion label, based on the assumption that
music emotion at a specific time is the accumulation of a piece
of music. Because there is yet no definitive conclusion about the
most effective time scale for emotion prediction, and Valence and
Arousal represent different characteristics along with the change
of time scale, the proposed MCAmodel can help make up for these
deficiencies by giving the more suitable time scale larger attention
weights dynamically adjusted by the data.

As for future work, we plan to further evaluate our finding us-
ing more data and on some other databases of music emotion pre-
diction. Furthermore, our proposed method can also be effective
in other field of studies, such as sentiment analysis of natural lan-
guage, emotion recognition of speech and affective impact predic-
tion ofmovie, all of which contain sequence of input and sequences
of variant scales have different influences on results. Actually, prob-
lems containing this characteristic could all benefit from our pro-
posed method and remain to be further investigated.
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