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Perceptually Weighted Mel–Cepstrum Analysis of Speech

based on Psychoacoustic Model

Hongwu YANG†∗, Student Member, Dezhi HUANG††∗∗, and Lianhong CAI†††, Nonmembers

SUMMARY This letter proposes a novel approach for mel-
cepstral analysis based on the psychoacoustic model of MPEG.
A perceptual weighting function is developed by applying cubic
spline interpolation on the signal-to-mask ratios (SMRs) which
are obtained from the psychoacoustic model. Experiments on
speaker identification and speech re-synthesis showed that the
proposed method not only improved the speaker recognition
performance, but also improved the speech quality of the re-
synthesized speech.
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1. Introduction

In this letter, we discuss a novel perceptually weighted
mel-cepstral analysis method, which estimates the
mel-cepstral coefficients (MCCs) through a frequency-
dependent weighting technique[1]. Since this kind of
method corresponds to human perception, it is better
than the mel-cepstrum analysis method proposed by
Tokuda et al.[2], which is widely used in HMM based
speech synthesis[3]. The inadequacy of their method is
that it may shift and widen the band of formants as
well as enhance the energy of formants.

To obtain a set of weighted mel-cepstral coeffi-
cients (WMCCs), we first have to calculate its percep-
tual weighting function. This is obtained by applying
the cubic spline interpolation on the signal-to-mask ra-
tios (SMRs) obtained from the psychoacoustic model of
MPEG[4]. We then use the Newton-Raphson method
[6]to apply the weighting function on the same set of
speech frequencies used in estimating MCCS to calcu-
late the WMCCs. Experiments on speaker identifica-
tion demonstrate that the WMCCs outperform both
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the mel-frequency cepstral coefficients (MFCCs) and
the MCCs. The objective and subjective experiments
on speech re-synthesis also indicate that using the WM-
CCs not only reduces the spectral distortion, but also
improves speech quality for the re-synthesized speech.
Therefore, the WMCCs may model spectral structure
more accurately than that of the MCCs.

2. Mel-Cepstrum Analysis

The mel-cepstral analysis represents the spectrum
based on the unbiased estimation log spectrum (UELS)
method[2], [5]. In mel-cepstral analysis, optimal cep-
stral coefficients are estimated from the short-time
spectrum of speech signals based on the nonlinear
perceptual prosperities of human auditory sensation.
Given a frame of speech signal, the modified peri-
odogram is defined as follows:

In(ω) =

∣∣∣∑N−1
n=0 w(n)x(n)e−jωn

∣∣∣2∑N−1
n=0 w2(n)

(1)

where w(n) is the window function.
The estimation of mel-cepstrum H(ω) is defined as

Eq. 2:

H(ω) =
∣∣∣∣e
∑

M

m=0
cmω̃−m

∣∣∣∣ (2)

ω̃ =
1 − αe−jω

e−jω − α
, |α| < 1

where α is the mel-frequency transform coefficient, M
is the order of estimation for mel-cepstral , and {cm}
is the mel-cepstral coefficients.

The estimation error function is defined as Eq. 3:

ε(c)=
1
2π

∫ 2π

0

(
IN (ω)
H(ω)2

−log IN (ω)+2 logH(ω)−1
)

dω
(3)

where c is the vector of MCCs.
The optimal mel-cepstral coefficients are estimated

by solving Eq. 3 as a minimization problem. From Eq. 3
we can see that the proportion of each frequency’s es-
timation error is completely the same.
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3. Weighted Mel-Cepstral Analysis

3.1 Weighted Estimation Error

Different frequencies of speech signal have different
functions in human auditory perception. In fact, only
part of frequencies are sensitive for auditory percep-
tion. For the mel-cepstral analysis, perceptually sen-
sitive frequencies should be estimated more accurately
than perceptually non-sensitive frequencies. Therefore,
we proposed a weighted estimation error function as
Eq. 4 to simulate the nonlinear characteristic of audi-
tory perception.

ε̃(c̃) =
1
2π

∫ 2π

0

(
IN (ω)
H(ω)2

−log IN (ω)+2 logH(ω)−1
)
W (ω)dω

(4)

where W (ω) is a non-negative weighting function. If
the weighting function has the same value for each fre-
quency, the weighted mel-cepstral analysis is equivalent
to the mel-cepstral analysis. From Eq. 4 we can get a
set of new mel-cepstral coefficients c̃, which we call the
weighted mel-cepstral coefficients (WMCCs).

3.2 Perceptual Weighting Function

The psychoacoustic model of the MPEG outputs a set
of signal-to-mask ratios (SMRs) that flag frequency
components with amplitude below the masking level,
so the SMRs can be used to represent the contribu-
tions of the various frequencies on the acoustic percep-
tion. Therefore, we adopt the SMRs as the percep-
tual weighting function. However, the SMRs obtained
from the psychoauditory model are discrete values. In
order to get the continuous perceptual weighting func-
tion, the cubic spline interpolation between the discrete
SMRs are performed for all frequencies so that the ini-
tial continuous weighting function, i.e. L(ω), ω ∈ [0, π]
is obtained. Therefore, the perceptual weighting func-
tion is defined as Eq. 4. Fig. 1 shows an example of
continuous weighting function W (ω), which is obtained
by applying cubic spline interpolation on the discrete
SMRs of syllable /a:/.

W (ω) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

L(ω)
2
∫ π

0 L(ω)dω
ω ∈ [0, π],

L(2π − ω)
2
∫ π

0 L(ω)dω
ω ∈ [π, 2π].

(5)

3.3 Solving the Minimization Problem

Given the modified periodogram and the weighting
function, the calculation of the WMCCs is equivalent
to minimizing the estimation error function given in
Eq. 4. By expanding Eq. 4, we get:
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Fig. 1 The continuous weighting function W (ω) for syllable
/a:/.

ε̃(c̃) =
1
2π

∫ 2π

0

(
IN (ω)
H(ω)2

−log IN (ω)
)

W (ω)dω

+
1
2π

∫ 2π

0

(2 logH(ω)−1)W (ω)dω (6)

where c̃ = (c0, c1, c2, ·, cM )T is the WMCCs that need
to be solved, M is the order of the weighted mel-cepstral
estimation. After replacing the H(ω) in Eq. 6 with
Eq. 2, we can get:

ε̃(c̃)=ϕ̃(c̃) + E

ϕ̃(c̃)=
1
2π

∫ 2π

0

(
IN (ω)

e2
∑M

m=0
c̃mRe(ω̃m)

+2
M∑

m=0

c̃mRe(ω̃m)

)

W (ω)dω

E = − 1
2π

∫ 2π

0

(log IN (ω) + 1)W (ω)dω (7)

Since E is shown to be unrelated to c̃ in Eq. 7, it
can be considered as a constant in solving the optimal
estimation problem. The minimization problem of ε̃(c̃)
is thus equivalent to the minimization problem of ϕ̃(c̃) ,
i.e. the nonlinear equation set can be shown as follows:

∂ϕ̃(c̃)
∂c̃m

=
1
π

∫ 2π

0

[
W (ω)− IN (ω)W (ω)

e2
∑M

m=0
c̃mRe(ω̃m)

]
Re(ω̃m)dω

=0, m = 0, 1, · · · , M (8)

Since ϕ̃(c̃) is a concave function, solution using the
Newton-Raphson method is stable, and can be applied
to solve Eq. 8. The increment of c̃, i.e. Δc̃ can be
solved as follows:

HΔc̃ = −Δϕ̃ (9)

where Δϕ̃ =
(

∂ϕ̃
∂c̃0

, ∂ϕ̃
∂c̃1

, · · · , ∂ϕ̃
∂c̃M

)T

. H is a Hessian ma-
trix, and is further defined as:
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H =
∂2ϕ̃

∂c̃∂c̃T
=

⎛
⎜⎜⎜⎜⎝

∂2ϕ̃
∂c̃0∂c̃0

∂2ϕ̃
∂c̃0∂c̃1

· · · ∂2ϕ̃
∂c̃0∂c̃M

∂2ϕ̃
∂c̃1∂c̃0

∂2ϕ̃
∂c̃1∂c̃1

· · · ∂2ϕ̃
∂c̃1∂c̃M

...
...

. . .
...

∂2ϕ̃
∂c̃M ∂c̃0

∂2ϕ̃
∂c̃M∂c̃1

· · · ∂2ϕ̃
∂c̃M∂c̃M

⎞
⎟⎟⎟⎟⎠ (10)

where

∂2ϕ̃

∂c̃m∂c̃n
=

2
π

∫ 2π

0

[
IN (ω)W (ω)

e2
∑

M

m=0
c̃mRe(ω̃m)

]
Re (ω̃m)Re (ω̃n)dω

Since the Hessian matrix H in Eq. 10 is equal to
a Toeplitz-plus-Hankel matrix, [6] leads to the con-
clusion that the time complexity of solving equation
set 8 is O(M log2 M). Hence the time complex-
ity of the weighted mel-cepstral analysis is O(K ×
M log2 M), where K is the iteration time, which is
dependent on the precision of the search. Because
of the quadratic convergence property of the Newton-
Raphson method, K generally has a small value and
therefore the weighted mel-cepstral coefficients can be
usually solved in real-time.

4. Experiments

4.1 Speaker Identification

In the experiment, we used all 49 speakers in the DR1
dialect region of TIMIT to perform evaluation. We
chose 72-order MFCC s, 72-order MCCs and 72-order
WMCCs as the speaker features to model the speaker’s
acoustic characteristic, where the first 26-order param-
eters of each set were constructed from the original co-
efficients, with the rest coming from their first- and
second-order differential coefficients. The speech sig-
nals were emphasized with a coefficient setting of 0.97.
Meanwhile, the blocking operation used a 25ms Black-
man window to scale the frame signal, and a 10ms hop-
ping size. We used the 7 longest (out of 10) utterances
of each speaker as the training data and the remaining
3 utterances as the testing data.

For each speaker, three 16 components Gaussian
mixtures model (GMM ) each using one of the 3 fea-
tures (MFCCs, MCCs and WMCCs)were trained as
the speaker models. Table 1 shows their recogni-
tion rate and WMCCs are shown to outperform both
MFCCsand MCCs. The result indicates that the WM-
CCs were able to characterize the vocal tract accurately
to correctly identify a speaker.

Table 1 Speaker recognition rate using the 3 features (%).

Features MFCC MCC WMCC

Correct recognition rate (%) 96.2 98.3 99.8

4.2 Speech Re-Synthesis

In the experiment, we used both a male (indicated with
M ) and a female (indicated with F ) corpus collected by
our laboratory. Both corpora include 1268 Chinese tone
syllables and 50 utterances. Each utterance includes
about 20 syllables. 26-order MCCs and WMCCs were
extracted from each syllable and utterance respectively
with a 25 ms Blackman window and 10 ms hopping.
All syllables and utterances were then re-synthesized
with the mel log spectrum approximation digital filter
(MLSADF )[7], using MCCs and WMCCs respectively.

4.2.1 objective test

We use modified Bark spectral distortion (MBSD)[8] as
the distortion criteria between the source speech and
the re-synthesized speech. The MBSD just manages
the perceptible spectral distortion.

Table 2 shows the results of the objective test on
the syllables and utterances. The MBSD between the
source speech and the re-synthetic speech with MCCs
or with WMCCs is calculated. From Table 2 we can
see that the MBSD is smaller for WMCCs than for
MCCs, which means that the spectral distortion of the
re-synthesized speech with the WMCCs is smaller than
that with the MCCs. Therefore, the quality of the re-
synthesized speech is higher for WMCCs.

Table 2 The MBSD (dB) between the source speech and the
re-synthesized speech.

MCCs WMCCs
speaker Syllable Utterance Syllable Utterance

M 0.46 0.77 0.41 0.64
F 0.59 0.82 0.53 0.78

4.2.2 subjective test

A contrastive experiment was performed to test the
quality of the re-synthesized speech in terms of user
perception. 200 utterances were re-synthesized, and 5
subjects were invited to evaluate the two sets of utter-
ances. The first set includes 100 utterances that were
re-synthesized with the MCCs while the second set in-
cludes the same 100 utterances that were re-synthesized
with the WMCCs. Matching utterances were identified
from the 2 sets, and they were played to the subjects
a pair at a time in a completely random manner. The
subjects were then asked to evaluate which of the utter-
ances sounds more pleasant and this step was repeated
for all 100 pairs of utterances.

The relative perception of the speech quality are
shown in Fig. 2, where the WMCCs utterances are
considered to be more pleasant for both the male and
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Fig. 2 The percentage of the sentences regarded as more pleas-
ant in the two sets(%).

female utterances. This is because for WMCA, more
spectral details of the source utterance are better pre-
served and the structure of formant is also better de-
fined. Therefore, utterances re-synthesized with WM-
CCs have higher fidelity and sound more authentic and
nature.

5. CONCLUSIONS

In this letter, we propose a weighted mel-cepstral anal-
ysis method. Based on the mel-cepstral analysis, we use
psychoacoustic model to develop a weighting function
so that different frequencies have different perceptual
weights for the estimation error. Compared with the
mel-cepstral analysis, the weighted mel-cepstral analy-
sis not only characterizes the vocal tract more precisely,
the structure of formants is also accurately preserved.
Because the auditory properties are taken into account
in the speech analysis, the WMCCs are in accordance
with the psychoacoustic rule. This improves the quality
of the re-synthesized speech.
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