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Abstract 

Prosodic features have been proven important to discriminate 
between different speech emotions, but they also have a 
fundamental linguistic function. Variations caused by linguistic 
contexts act as noises in emotion classification and should be 
eliminated. The paper proposes a novel method to decompose 
the raw “mixed” prosodic features into features determined by 
linguistic contexts and those responsible for emotionality, and 
the latter are further used exclusively in emotion classification. 
In the method, features determined by linguistic contexts are 
first predicted based on the analysis of neutral speech through 
Generalized Regression Neural Network (GRNN), and Linear 
Discriminant Analysis (LDA) is then applied to accomplish 
the decomposition. Experiments on Chinese emotional speech 
have shown that the emotional features estimated through 
feature decomposition have a better discrimination between 
different emotions, and could achieve much higher 
classification accuracy than raw features. 
 

1. Introduction 

Human speech consists of not only words and meanings, but 
also the information about emotion that resides in the way 
words are spoken. It would be helpful if a computer had the 
ability of recognizing what emotion is implied in a given 
utterance. To tackle the task, it is necessary to examine speech 
features and find out which ones convey emotion information 
and could discriminate between different emotions well. In 
most relevant literatures, the importance of prosodic features 
in emotional speech is evident [1][2]. Experiments have also 
demonstrated their efficiency on recognizing emotion [3].  

While convey emotion information, prosodic features also 
have a fundamental linguistic function, and are partly 
determined by linguistic contexts. For example, questions are 
often concerned with rising pitch contours; accents are 
implemented by linked increase of pitch, duration, and 
intensity in general. Moreover, in Chinese, there exist four 
specific syllable tone patterns: high-level, rising, falling-rising, 
and high-falling. As an example, figure 1 shows pitch contour 
of a neutral Chinese utterance “ni3 bu4 xi3 huan1”, which 
means, “You dislike it”. The first and third syllables have the 
falling-rising pattern, the second syllable has the high-falling 
pattern, and tone pattern of the last syllable is high-level. It 

could be observed that both pitch level and contour shape are 
highly dependent on the syllable tone pattern. Thus variations 
caused by linguistic contexts would be confounded with those 
associated with emotionality, and act as noises in emotion 
classification. 

 

Figure 1: Pitch contour of the neutral Chinese utterance 
“ni3 bu4 xi3 huan1”, which means, “You dislike it”. 

To get more efficient features for emotion classification, 
the paper proposes a novel method to decompose raw 
“mixed” prosodic features into features determined by 
linguistic contexts and those responsible for emotionality, and 
the latter are further used exclusively in emotion classification. 
Features determined by linguistic contexts are first predicted 
based on the analysis of neutral speech through Generalized 
Regression Neural Network (GRNN), and Linear Discriminant 
Analysis (LDA) is then applied to accomplish the 
decomposition. Finally, experiments are performed to 
demonstrate efficiency of the emotional features estimated 
through feature decomposition on classifying speech emotion. 

The rest of the paper is organized as follows. Section 2 
explains the proposed feature decomposition method. Section 
3 describes the emotion classification procedure, including 
feature extraction and classifier selection. Finally, in section 4, 
experiment results are shown to evaluate the decomposition 
method.  

 

2. Feature Decomposition 

Suppose ),,,( 21 Dfff L  represents the raw prosodic feature 

vector extracted directly from emotional speech, then each 
dimension if ( Di ≤<0 ) is regarded as a linear combination of 

the feature determined by linguistic contexts (represented 



as l
if ) and that responsible for emotionality (represented 

as e
if ). That is, 
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Where ik and iα are both non-zero constants. To 
estimate e

if , formula (1) is transformed as: 
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So, the decomposition could be divided into two 
procedures:  a. Predict l

if  based on the analysis of neutral 
speech; b. Estimate *

iα  in formula (2) to accomplish the 
decomposition ( *

ik  is just a scale factor and thus not 
important). 

2.1. l
if  Prediction 

In Text -to-Speech research field, prosodic characteristics of 
the synthesized speech have could be predicted successfully 
by linguistic context parameters through some data-driven 
models [4], such as Artificial Neural Network (ANN). The 
problem is similar with the l

if  prediction, so analogous 
models could be used for reference. 

Generalized Regression Neural Network (GRNN), which 
is often used in function approximation, is applied to 
predict l

if . Inputs of the network are linguistic context 
parameters associated with the feature dimension (represented 
as iCP  in figure 2), and the output is l

if . GRNN is a two-
layer structured network. The first layer is a radial basis one, 
whose neurons have the transfer function as below: 
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Where p  is the input vector, w  is the weight vector, and b  
is the bias. The function outputs a value based on the distance 
between the input vector and the weight vector. As the 
distance decreases, the output of the function increases. The 
bias b  allows the sensitivity of the radial basis neuron to be 
adjusted. The first layer has as many neurons as there are 
input/target vector pairs in training set, and the weight vectors 
are set to be the training input vectors. 

The second layer of GRNN is a linear one, whose neuron 
number is also equal to number of input/target vector pairs in 
training set. The layer-2 weight vectors are set to be the target 
vectors. Thus, when a testing input vector is closed to a layer-
1 neuron weight, one of the neurons in the first layer produces 
a layer-1 output closed to 1, and the others are closed to 0. 
This leads to a final output closed to the associated target 
vector.  In experiments, GRNN is implemented by MATLAB. 

2.2. *
iα  Estimation 

Since e
if  represents the feature responsible for emotionality, 

it should have the best discrimination between different 
emotions. So Linear Discriminant Analysis (LDA), which is a 
feature extraction and compression method designed to 
preserve as much discriminant information as possible [5], is 
used to find the direction with the best discrimination. 

Suppose x and y  represent the original feature vector 
and the feature vector after transform respectively, then LDA 
maps x  to y  through some linear basis 
functions ),2,1,{ djj L=φ , where d  is the dimension 
number of y : 

 jj xy φT= , dj ,,2,1 L=  (6) 

The basis functions in LDA are designed to maximize the 
linear discrimination between classes. Measurement of the 
discrimination is based on the between-class covariance matrix 

bS  and the within-class covariance matrix wS . bS  reflects 
how much the feature vectors between classes vary, 
represented as below: 
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Where kP , kµ  are prior probability and mean vector of the k-
th class respectively, N  is the class number, and µ  is mean 
of all kµ . wS  reflects how much the feature vectors within 
one class vary, represented as: 
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Where kC  represents the k-th class. Then the discrimination 
between classes could be measured as: 
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To maximize F , basis functions }{ jφ  should be the 

eigenvectors of bw SS 1−  associated with the first d  largest 

eigenvalues. It should be noted that the between-class 
covariance matrix bS  has a maximum rank of 1−N , so d  is 

no more than 1−N . 
To estimate *

iα , the original feature x  should be set 
as T),( l

ii ff , and then *
iα  is 1112/ φφ .  

 

3. Emotion Classification 

Figure 2 shows the emotion classification paradigm. First, raw 
prosodic feature vector ),,,( 21 Dfff L  is extracted from 
speech signal )(ts . Then for each feature dimension, the 
“mixed” raw feature if  and linguistic context parameters iCP  
are input to the feature decomposition module to estimate the 



emotional feature e
if . Finally, the emotional feature vector 

),,,( 21
e

D
ee fff L  is used exclusively in classification. 

 
Figure 2: Emotion classification paradigm.  

3.1. Feature Extraction 

In the classification, all features are derived from f0 and 
duration. Basic frame-based parameters are first extracted. F0 
parameter is extracted by YIN, a modified auto-correlation 
algorithm [6]. Syllable boundaries are labeled through the 
software SPEECH, which could first estimate the boundaries 
and then permit manual adjustment on them. Thus the syllable 
duration could be easily extracted. 

Features used in classification are statistics computed 
throughout each utterance.  They are listed as below: 

Statistics on f0 contour: mean, maximum, range, and 
standard deviation; 

Statistics on derivative of f0 contour: mean and standard 
deviation; 

Statistics on syllable duration: mean and standard 
deviation. 

Table 1: Linguistic context parameters used to predict 
the linguistically determined features. 

Prosodic Features Linguistic Context Parameters 

Mean and std of 
f0 contour; and 

those of derivative 
of f0 contour; 

Sentence type; total syllable number; 
number of syllables with the four tone 

patterns respectively; 

Maximum of f0 
contour; 

Sentence type; position, tone pattern 
and accent type of syllable associated 
with the maximal f0, its pre-syllable 

and post-syllable; 

Range of f0 
contour; 

Sentence type; position, tone pattern 
and accent type of syllable associated 

with the maximal f0, and those of 
syllable with the minimal f0; 

Mean and std of 
syllable duration; 

Sentence type; total syllable number; 
number of accented syllables; 

Table 1 lists detailed linguistic context parameters used to 
predict the linguistically determined features for each 
dimension (see details in section 2.1). 

3.2. Classifier 

In the work, two neural networks designed for classification 
problems are used. One is the familiar Multiple Layer 
Perceptron (MLP) with one hidden layer. The input is 
acoustic feature vector, and each output-layer neuron 
represents one class. In training stage, output of the neuron 
which is associated with the class that input vector belongs to 
is set to 1, others are set to 0. BP algorithm is then performed 
to train the network. In testing stage, the testing input vector 
is classified into the class associated with the output-layer 
neuron that has the maximal output value. 

The other model is Probabilistic Neural Network (PNN).  
The network has a structure of two layers. Similar with 
GRNN, the first layer is a radial basis one, whose action is to 
compute distances between the testing input vector and the 
training input vectors (as weights of the first layer), and 
produces a vector that indicates how close the testing input is 
to them. The second layer has class number-equaled linear 
neurons; each weight has a value of 1 only when the layer-2 
neuron associated with the particular class of the layer-1 
neuron, and 0 otherwise. Thus, it sums these contributions for 
each class of inputs to produce as its output a vector of 
probabilities. Finally, a compete transfer function on the 
output layer picks the maximum of these probabilities, and 
outputs 1 for that class and 0 for other classes.  Different 
from MLP, PNN classifies testing input vectors based on 
their similarities with training inputs stored in the network, 
and do not need a complicated training algorithm. In 
experiments, these two networks are both implemented by 
MATLAB. 

4. Experiments 

4.1. Database for Experiments 

The emotional speech database contains six emotion classes: 
anger, fear, happiness, sadness, surprise, and neutral emotion. 
There are about 200 sentence level utterances for each class, 
which are produced by an amateur actress. Texts for different 
classes are not all the same, and they all include different 
sentence types (statements and questions), syllable tone 
patterns, and accent distributions. All the utterances are 
recorded in a relative quiet environment, and saved in mono 
wave files with 16 kHz sample rate and 16 quantitative bits. 
In classification, 80 percent of the utterances are used as 
training data, and the other 20 percent are testing data. 

There is also another neutral database, which is used as 
the training data to estimate the features determined by 
linguistic contexts (see section 2 for details). This neutral 
database has about 300 utterances, which also include 



different sentence types, syllable tone patterns, and accent 
distributions.  

4.2. Classification Results 

In experiments, the leave-one-out cross-validation technique is 
used. The whole dataset is equally divided into five subsets. 
Then the classification is performed five times, at each time 
using one unique subset for testing, and the other four subsets 
for training. The classification results shown below are those 
averaged across all the subsets. Table 2 lists the average 
classification accuracy by using the emotional features 
estimated through feature decomposition (abbreviated as 
emotional features) and the raw “mixed” features respectively. 
It is shown that the accuracy associated with the emotional 
features is much higher than that with raw features, 17.0% 
higher by MLP, and 11.5% higher by PNN. The highest 
accuracy reaches 93.7%. The result suggests that the 
proposed decomposition method could reduce the influence of 
linguistic contexts on emotional features efficiently. 

Table 2: Average classification accuracy. 

Accuracy (%) MLP PNN 

Emotional Features  82.4 93.7 

Raw Features 65.4 82.2 

More detailed results are further shown to analyze the 
confusion between different emotions. Only the PNN results 
are shown, for those of MLP are much similar. Table 3 and 
table 4 list confusion matrix associated with the emotional 
features and raw features respectively. Each emotion class is 
represented by its first one or several letters. 

Table 3: Confusion matrix with the emotional features. 

(%) A F H Sad Sur N 
A 
F 
H 

Sad 
Sur 
N 

82.3 
3.9 
3.8 
0.0 
8.2 
0.0 

5.6 
95.6 
0.0 
0.0 
0.0 
0.0 

4.2 
0.0 
95.7 
0.0 
0.9 
0.0 

0.0 
0.5 
0.0 
98.6 
0.0 
1.1 

7.0 
0.0 
0.5 
0.0 
90.9 
0.0 

0.9 
0.0 
0.0 
1.4 
0.0 
98.9 

Table 4: Confusion matrix with the raw features. 

(%) A F H Sad Sur N 
A 
F 
H 

Sad 
Sur 
N 

67.0 
5.4 
14.7 
0.0 
6.8 
0.0 

6.5 
93.7 
0.0 
0.0 
0.0 
0.4 

18.1 
0.0 
65.9 
0.0 
21.4 
1.1 

0.0 
0.5 
0.0 
98.1 
0.0 
1.8 

6.1 
0.0 
17.5 
0.0 
71.8 
0.0 

2.3 
0.5 
1.9 
1.9 
0.0 
96.7 

To illustrate the results more clearly, ijI  is defined as the 
confusion degree between the i-th and j-th emotion classes: 
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Where r  is the classification result of the input vector x . An 
emotion class pair is regarded as “most confused” when the 
associated ijI  is larger than 10%. Then table 3 indicates that 
none of the emotion pairs is most confused by using the 
emotional features, while in table 4, emotion pair (anger, 
happiness) and (happiness, surprise) are most confused by 
using raw features. After feature decomposition, confusion 
degrees of the above two emotion pairs decrease from 16.4% 
to 4.0% and 19.5% to 0.7% respectively.  

5. Conclusions  

The paper proposes a novel method to decompose the raw 
“mixed” prosodic features into features determined by 
linguistic contexts and those responsible for emotionality, and 
the latter are further used exclusively in emotion classification. 
Features determined by linguistic contexts are first predicted 
based on the analysis of neutral speech through GRNN, and 
then LDA is applied to accomplish the decomposition. 
Classification experiments have been performed to evaluate 
efficiency of the feature decomposition method. By using the 
emotional features estimated through feature decomposition, 
the classification average accuracy is improved at least 11.4 
percent when compared with the raw features, and reaches a 
best performance of 93.7%. More detailed results indicate that 
the most evident decrease of confusion happens at the 
emotion pair (anger, happiness) and (happiness, surprise). 

6. References 

[1] R. Cowie, E. Douglas-Cowie, N. Tsapatoulis, etc, 
“Emotion Recognition in Human-Computer Interaction,” 
Signal Processing Magazine, Vol. 18, No. 1, IEEE 
Publisher, New York, pp. 32-80, Jan. 2001. 

[2] A. Paeschke, W.F. Sendlmeier, “Prosodic Characteristics 
of Emotional Speech: Measurements of Fundamental 
Frequency Movements,” Proceedings of the ISCA 
Workshop on Speech and Emotion, Northern Ireland, pp. 
75-80, Sep. 2000. 

[3] F. Dellaert, T. Polzin and A. Waibel, “Recognizing 
Emotion in Speech,” Proceedings of the International 
Conference on Spoken Language Processing, pp. 1970-
1973, 1996. 

[4] J.H. Tao, L.H. Cai, S.X. Zhao, etc, “The Study of the 
Trainable Prosodic Model for Chinese Text to Speech 
System,” Shengxue Xuebao/Acta Acustica (in Chinese), 
Vol. 26, No. 1, Beijing, pp. 67-72, Jan. 2001. 

[5] N. Malayath, H. Hermansky, “Data-Driven Spectral 
Basis Functions for Automatic Speech Recognition,” 
Speech Communication, No. 40, Elsevier Science, pp. 
449-466, 2003. 

[6] A.D. Cheveign, H. Kawahara, “Yin, a Fundamental 
Frequency Estimator for Speech and Music,” J. Acoust. 
Soc. Am. Vol. 111, No. 4, Apr. 2002, pp. 1917-1930. 

 


