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ABSTRACT
Human hands, the primary means of non-verbal communication,
convey intricate semantics in various scenarios. Due to the high
sensitivity of individuals to hand motions, even minor errors in
hand motions can significantly impact the user experience. Real ap-
plications often involve multiple avatars with varying hand shapes,
highlighting the importance of maintaining the intricate seman-
tics of hand motions across the avatars. Therefore, this paper aims
to transfer the hand motion semantics between diverse avatars
based on their respective hand models. To address this problem,
we introduce a novel anatomy-based semantic matrix (ASM) that
encodes the semantics of hand motions. The ASM quantifies the po-
sitions of the palm and other joints relative to the local frame of the
corresponding joint, enabling precise retargeting of hand motions.
Subsequently, we obtain a mapping function from the source ASM
to the target hand joint rotations by employing an anatomy-based
semantics reconstruction network (ASRN). We train the ASRN
using a semi-supervised learning strategy on the Mixamo and Inter-
Hand2.6M datasets. We evaluate our method in intra-domain and
cross-domain hand motion retargeting tasks. The qualitative and
quantitative results demonstrate the significant superiority of our
ASRN over the state-of-the-arts. Code available at Semantics2Hands.
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1 INTRODUCTION

Source Motion Copy Semantics-Preserving 
Retargeting

Figure 1: Despite the accurate body motions, errors intro-
duced by copying finger joint rotations make the “thumb-
up” gesture illegible.

The generation of realistic handmotions has demonstrated promis-
ing potential in diverse virtual avatar scenarios, including co-speech
gesture synthesis [25, 27, 38] and sign language synthesis [14, 30,
39]. Human hands, being the primary means of non-verbal com-
munication [31], convey subtle nuances during the execution of
particular hand gestures. Given people’s high sensitivity to hand
motions, even slight errors can significantly impact the user expe-
rience in virtual avatar applications. Consequently, maintaining
consistent hand motion semantics across various virtual avatar
hands is paramount. However, due to the highly articulated nature
of the human hand with multiple degrees of freedom (DoFs) and the
varying hand shapes and proportions of different avatars, directly
copying joint rotations would significantly compromise the intri-
cate semantics of handmotions, as shown in Figure 1. Consequently,
developing a methodology that can preserve the semantics of hand
motions when retargeting them to diverse avatars is essential.

Previous research has focused on motion retargeting and hand-
object interaction. Motion retargeting, pioneered by Gleicher [11],
aims to identify the characteristics of source motions and transfer
them to target motions on different characters. Early work [3, 9, 19]
focused on optimization-based approaches. Recently, researchers
have proposed data-driven approaches [1, 35, 41] using various net-
work architectures and semantic measurements. These approaches
can successfully retarget realistic body motions but do not apply
to dexterous hand motion retargeting. Ge et al. [10] proposed a
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rule-based approach for retargeting sign language motions; how-
ever, their method is limited to a specific set of pre-defined hand
movements and lacks sufficient testing. Hand-object interaction is
a research area that focuses on synthesizing realistic hand motions
during interactions with objects, including static grasp synthe-
sis [12, 34, 45] and manipulation motion synthesis [24, 37, 40, 43].
However, these methods fail to preserve the semantics of hand
motions in communication scenarios. Furthermore, they do not
apply to diverse hand models with varying shapes and proportions.
Despite the existing methods, it remains a challenge: retarget real-
istic hand motions with high fidelity across different hand models
while preserving intricate motion semantics.

This paper focuses on retargeting dexterous hand motions across
different hand models while preserving the semantics of the source
hand motions. Hand motion retargeting requires a higher level of
semantic measurement precision than body motion retargeting,
making this idea novel. The semantic measurements previously
employed in motion retargeting, including cycle consistency [1, 35]
and distance matrix [41], are inadequate due to the high density
of hand joints within a limited space, which results in significant
spatial interactions between finger joints and the palm.

Therefore, our central insight is that the spatial relationships
between the finger joints and the palm are crucial for preserving
hand motion semantics. Consequently, we encode the spatial rela-
tionships into a novel anatomy-based semantic matrix (ASM). We
utilize ASM as the semantic measurement for precise hand motion
retargeting. In particular, we first build anatomical local coordinate
frames for finger joints on different hand models. Then we con-
struct ASM based on the anatomical local coordinate frames. ASM
quantifies the positions of the palm and other joints relative to the
local frame of the given finger joint. Next, we acquire a mapping
function from the source motion ASM to the target motion rotations
using an anatomy-based semantics reconstruction network (ASRN).
We train ASRN on two heterogeneous hand motion datasets [2, 23].
Unlike template mesh-based methods [40, 43] for semantic corre-
spondence, our approach is not dependent on template meshes and
can be applied to various hand models.

We conducted comprehensive experiments to assess the quality
of the hand motions generated by our ASRN. These experiments
encompassed both intra-domain and cross-domain hand motion
retargeting scenarios involving intricate hand motion sequences
and a diverse range of hand shapes. The qualitative and quanti-
tative results show that our ASRN outperforms existing motion
retargeting methods by a large margin.

To summarize, our contributions are as three-fold:

• We propose a novel task: semantics-preserving retargeting
of dexterous hand motions across diverse hand models.

• We introduce an anatomy-based semantic matrix (ASM) that
quantifies hand motion semantics without relying on any
template mesh, making it applicable to various hand models.

• We propose a novel framework for semantics-preserving
hand motion retargeting, leveraging the ASM. Experimental
results on both intra-domain and cross-domain hand motion
retargeting tasks validate the superior performance of our
framework over existing methods.

2 RELATEDWORK
2.1 Motion Retargeting
Motion retargeting aims to identify the features of the source
motions and transfer them to the target motions on a different
character. The pioneering work by Gleicher [11] addresses motion
retargeting as a spatial-temporal optimization problem with the
source motion features as kinematic constraints. Subsequent stud-
ies propose solutions to this optimization problem with various
constraints [3, 5, 19, 33].

Recently, data-driven methods [1, 7, 15, 20, 35, 41, 44] have be-
come increasingly appealing due to the growing availability of
motion capture data. Delhaisse et al. [7] and Jang et al. [15] train
neural networks for retargeting using paired training data. Subse-
quently, Villegas et al. [35] develop an adversarial neural network
trained with cycle consistency [44], eliminating the need for paired
ground truth. Aberman et al. [1] propose a skeleton-aware network
for retargeting motions between skeletons with varying topologies.
Zhang et al. [41] also introduces the Distance Matrix for measuring
body motion semantics.

However, all the methods above either truncate finger move-
ments or merely replicate finger joint rotations during retarget-
ing, resulting in the loss of intricate semantics in dexterous hand
motions. In contrast, our framework carefully measures the hand
motion semantics with an anatomy-based semantic matrix (ASM),
and transfers these semantics to the target hand motion through a
novel anatomy-based semantics reconstruction network (ASRN).

2.2 Hand-object Interaction Synthesis
The synthesis of hand grasping given an object has been extensively
studied in robotics [4, 8, 29]. Recently, several data-driven methods
have been proposed [6, 12, 32, 45]. Among these methods, Karun-
ratanakul et al. [17] and Jiang et al. [16] propose to represent the
proximity between the hand and the object as an implicit function.

Object manipulation synthesis involves dynamic hand and object
interaction, which makes it more relevant to our research. Previous
researchers have tackled this issue by optimizing hand poses to
meet different constraints [22, 24, 37, 42]. In a recent study, Zhang
et al. [40] employed hand-object spatial representations to learn
object manipulation using motion capture data. Subsequently, Zhou
et al. [43] devised a different object-centric spatiotemporal repre-
sentation.

However, these representations cannot capture the semantics
of hand motion as they neglect the interaction between the palm
and the fingers. Furthermore, these representations are explicitly
designed for a given template hand mesh, which restricts their ap-
plicability to different hand models. In contrast, our ASM quantifies
hand motion semantics without depending on a template mesh,
allowing its application to diverse hand models.

3 PROBLEM FORMULATION
This paper aims to learn a mapping function 𝑓 that transfers the
source hand motion to the target hand while preserving the seman-
tics of the source hand motion. The inputs to the function are the
source joint rotation sequenceQA, the source hand shape parameter
HA, the source hand anatomical parameterMrest

A , the target hand
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Figure 2: The figure presents an overview of the proposed pipeline consisting of two stages. The extraction stage involves the
retrieval of ASM from the source handmotion. The reconstruction stage utilizes the source ASM, target hand shape parameter,
and target hand anatomical parameter to reconstruct the target hand motion.

shape parameter HB, and the target hand anatomical parameter
Mrest

B . The mapping function can be formulated as follows:

𝑓 (QA,HA,Mrest
A ,HB,Mrest

B ) =⇒ QB, (1)

where QB is the target joint rotation sequence.

4 METHODOLOGY
Based on the formulation in Section 3, we have developed a frame-
work for retargeting hand movements, as depicted in Figure 2. We
introduce a novel anatomy-based semantic matrix (ASM) based on
the finger anatomical coordinate frame. By utilizing the ASM, we
train an anatomy-based semantics reconstruction network (ASRN)
to predict the target joint rotation sequence using the source ASM,
target hand shape parameter, and target hand anatomical parame-
ter.

In the subsequent subsections, we briefly introduce the anatomi-
cal coordinate frame of finger movements, as outlined in Section 4.1.
Next, we elaborate on the definition of the ASM in Section 4.2. Fi-
nally, we describe the framework pipeline and training details in
Section 4.3.

4.1 Twist-bend-splay Frame
The human hand exhibits a high degree of articulation. Directly
predicting rotations of all 15 finger joints can lead to abnormal
hand postures. Previous works [21, 36] suggest that constraints
can be applied to the finger joint rotations to prevent abnormal
hand movements. Yang et al. [36] extended MANO [28] to develop a
hand model called A-MANO incorporating anatomical constraints.
A-MANO assigns a Cartesian coordinate frame, known as the Twist-
bend-splay frame, to each joint in the hand’s kinematic tree. The
frame’s x, y, and z axes align with the three revolute directions:

twist splay bend

thumb

index

Mixamo

InterHand

Figure 3: Left: Twist-bend-splay frames obtained from dif-
ferent hand models using our annotation tool. Right: Fin-
ger movements in the twist, splay, and bend directions. Note
that the bend and splay directions of the thumb joints differ
significantly from those of the other four fingers.

twist, bend, and splay, based on hand anatomy. Most finger joints
have only one degree of freedom (DoF) along the bend axis.

While A-MANO shows promise in estimating MANO pose dur-
ing hand-object interaction, it does not apply to hand models from
external sources, such as the hands of Mixamo [2] characters. To
mitigate this problem, we develop a tool for annotating the Twist-
bend-splay frames of different hand models. Figure 3 demonstrates
that our tool can readily provide the Twist-bend-splay frames for
hands obtained from both InterHand2.6M [23] and Mixamo [2].
Details of our annotation tool can be found in Appendix A.

4.2 Anatomy-based Semantic Matrix
Our framework aims to preserve the intricate semantics while retar-
geting hand motions between hand models from different sources.
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Figure 4: Left: The inter-finger semantic features capture
the subtle semantics of finger movements. Right: The palm-
finger semantic features capture the overall hand posture.
Yellow cubes represent the palm anchors.

This paper defines hand motion semantics as the spatial relation-
ships between the fingers and the palm. Due to the absence of
paired ground truth with intense semantic supervision, we intro-
duce a novel anatomy-based semantic matrix (ASM) as a semantic
measurement for hand motion retargeting. Compared to existing
semantic measurements in body motion retargeting [1, 35, 41] and
object manipulation synthesis [40, 43], the proposed ASM captures
the intricate semantics of hand motions and can be applied to hand
models from different sources without any additional cost.

Our ASM is constructed based on the twist-bend-splay frame
introduced in Section 4.1. The crucial insight behind constructing
the ASM lies in that the orientation of the twist-bend-splay frame
reveals the finger’s structure. As shown in Figure 4, the splay axis
(blue axis) extends from the finger pulp to the back surface of the
finger, while the bend axis (green axis) stretches from the right
side to the left side of the finger. The twist axis also aligns with the
finger bone. In this scenario, we can deduce the spatial relationships
between the middle fingertip and the index fingertip based on the
coordinates of the middle fingertip within the local twist-bend-splay
frame of the index fingertip.

The proposed ASM applies to hand models composed of five
fingers, each consisting of four joints (including a dummy fingertip
joint). The semantic matrix comprises two components: inter-finger
semantic features and palm-finger semantic features. Formally, at
time 𝑡 , the coordinates of the 𝑘-th finger joint within the global
frame are represented as gx𝑘 ∈ R3. gM𝑘 represents the rotation
matrix of the twist-bend-splay frame of joint 𝑘 within the global
frame. The coordinates of another joint𝑚 within the local frame
of joint 𝑘 are given by 𝑘x𝑚 = gMT

𝑘
(gx𝑚 − gx𝑘 ). We define 𝑘x𝑚

as the inter-finger semantic feature of joint 𝑚 concerning joint
𝑘 . Additionally, we introduce the palm-finger semantic feature to
capture the overall hand posture, as depicted in Figure 4. Inspired
by Yang et al. [36], we define nine palm anchors along the line
connecting the metacarpophalangeal and wrist joints. We denote
the palm-finger semantic feature of the 𝑛-th anchor with respect
to joint 𝑘 as 𝑘xp𝑛 = gMT

𝑘
(gxp𝑛 − gx𝑘 ), where gxp𝑛 represents the

coordinates of the 𝑛-th anchor within the global frame. By combin-
ing the inter-finger semantic features and the palm-finger semantic
features, we can construct the semantic matrix for joint 𝑘 as:

𝑘D = [𝑘x1, 𝑘x2, . . . , 𝑘x20, 𝑘xp1 , 𝑘xp2 , . . . , 𝑘xp9 ] ∈ R29×3 . (2)

By having semantic matrices for all 20 finger joints, we obtain the
semantic measurement of the entire hand model without relying
on any standard mesh template.

4.3 Semantics-Preserving Retargeting
The hand retargeting pipeline comprises two stages: semantic fea-
ture extraction and semantics-preserving reconstruction. We ex-
tract semantic matrices from the source hand motion during the
first stage. In the second stage, we employ the anatomy-based se-
mantics reconstruction network (ASRN) to reconstruct handmotion
on the target hand model from the source ASM while preserving
the source semantics. The overall pipeline is depicted in Figure 2.

In the semantic feature extraction stage, the 𝑇 -frame hand mo-
tion sequence in the twist-bend-splay frame, represented as quater-
nions of the 15 finger joints, is denoted as Qtbs

A ∈ R𝑇×15×4. Af-
ter converting Qtbs

A to the global frame using the rest orientation
of the joint twist-bend-splay frames Mrest

A ∈ R15×3×3, we obtain
QA ∈ R𝑇×15×4. We then perform forward kinematics (FK) to derive
the global coordinates of the finger joints XA ∈ R𝑇×20×3 and the
global orientation of the twist-bend-splay framesMtbs

A ∈ R𝑇×20×3×3.
It is important to note that the FK results include the dummy fin-
gertip joints. Additionally, the shape parameter HA ∈ RℎA takes
different forms depending on the model type. In the case of MANO
models,HA represents shape PCA coefficients published by Romero
et al. [28], while for Mixamo models,HA corresponds to the normal-
ized finger joint offsets. Finally, we extract the semantic matrices
DA = [1DA,

2DA, . . . ,
20DA] ∈ R20×𝑇×29×3 from XA and Mtbs

A us-
ing Equation 2, where 𝑘DA is the concatenation of 𝑘D in 𝑇 frames.

Having obtained the semantic matricesDA from the source hand
motion, we utilize our ASRN to reconstruct the target hand motion
Qtbs
B ∈ R𝑇×15×4 on the target hand model B. A ResNet-like [13]

architecture is employed. Consecutive 1D ResNet layers process
the source ASM DA. Additionally, ASRN receives the target hand
shape parameterHB and the target hand local frame rest orientation
Mrest

B as inputs. An MLP encodesHB andMrest
B initially, followed by

concatenation with the input of each ResNet layer. The output of the
final ResNet layer is used as input for a fully-connected layer, which
predicts the target hand joint rotation Qtbs

B in target hand twist-
bend-splay frames. Next, we extract semantic matrices DB from
the generated hand motion. In this work, hand motion semantics
preservation is modeled as preserving spatial relationships between
the fingers and the palm. This design defines the semantic lossLsem
as the weighted cosine similarity between the source and target
semantic matrices:

Lsem =
1
𝑇

𝑇∑︁
𝑡=1

20∑︁
𝑗=1

29∑︁
𝑘=1

𝜔 𝑗𝑘

D𝑗,𝑡,𝑘

A · D𝑗,𝑡,𝑘

B

| |D𝑗,𝑡,𝑘

A | |2 | |D𝑗,𝑡,𝑘

B | |2
, (3)

where the weight 𝜔 𝑗𝑘 is defined as:

𝜔 𝑗𝑘 =


1 + exp(−| |D𝑗,𝑡,𝑘

A | |2)∑20
𝑚=1 exp(−| |D

𝑗,𝑡,𝑚

A | |2)
if 𝑘 ∈ {1, 2, . . . , 20}

1 if 𝑘 ∈ {21, 22, . . . , 29}.
(4)

This weighting scheme encourages the network to focus on close-
finger interactions.
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To mitigate abnormal hand postures generated by our network,
we propose an anatomical loss, denoted asLana.Qtbs

B is decomposed
into three Euler angles: 𝜙twist, 𝜙bend, and 𝜙splay, aligned with the
local twist-bend-splay frame axes. Initially, we apply a penalty to
𝜙twist for all the joints along the hand’s kinematic tree. Additionally,
a penalty is imposed on 𝜙splay if it exceeds the acceptable range.
Finally, we penalize the rotation angle 𝜙bend if it exceeds 𝜋/2 or
falls below 0. The anatomical loss is defined as:

Lana =
1
𝑇

𝑇∑︁
𝑡=1

(
∑︁
𝑗 ∈all

|𝜙𝑡, 𝑗twist |
2 +

∑︁
𝑗∉knuckle

|𝜙𝑡, 𝑗splay |
2

+
∑︁

𝑗 ∈knuckle
max( |𝜙𝑡, 𝑗splay | − 𝜋/18, 0)2

+
∑︁
𝑗 ∈all

max(𝜙𝑡, 𝑗bend − 𝜋/2, 0)2 +
∑︁
𝑗 ∈all

min(𝜙𝑡, 𝑗bend, 0)
2) .

(5)

Since our network is trained on hand motion data from different
hand models, the self-reconstruction supervision signals are only
available when A and B belong to the same character. Therefore,
ASRN is trained by minimizing the following loss function:

Ltotal = 1A=B ·MSE(Qtbs
A ,Qtbs

B ) − _semLsem + _anaLana, (6)

where _sem and _ana are hyper-parameters. The indicator function
1A=B takes the value 1 if A and B belong to the same character, and
0 otherwise.

5 EXPERIMENTS
5.1 Datasets
The evaluation of our framework encompasses both the Mixamo
dataset [2] and the InterHand2.6M dataset [23]. TheMixamo dataset
comprises animations performed by various virtual characters with
different shapes; however, the dataset does not guarantee consistent
hand motion quality and diversity. The InterHand2.6M dataset is
a comprehensive collection of hand motion data captured using
a multi-view camera system and supplemented with MANO [28]
hand pose annotations. While the InterHand2.6M dataset offers
high-quality hand motion data with considerable diversity, it has
limitations regarding hand shape variations. During the training
phase, we gathered 40,903 frames of hand motion data from nine
distinct characters. In the testing phase, we obtained 14,316 frames
of hand motion data from four different characters, ensuring that
none of the testing characters were present during the network’s
training.

5.2 Implementation Details
The hyper-parameters _sem and _ana are set to 1.0 and 0.1 respec-
tively. The network is trained for 100 epochs with a batch size of
64. We use the Adam optimizer [18] with the learning rate set to
10−4 to train the network. The input to the network is a sequence
of 8 frames with a frame rate of 5 fps. The network is implemented
in PyTorch [26] and trained on a single NVIDIA RTX 2080 Ti GPU.
Further details can be found in Appendix B.

5.3 Evaluation Metrics
For hand motions with paired ground truth (GT) on different char-
acters, we use Mean Square Error (MSE) to measure how close the

retargeted joint positions are to the paired GT. In the absence of
paired GT, the following metrics are used to evaluate the quality of
the retargeted hand motions:

𝑆palm =
1

20 × 9 ×𝑇

𝑇∑︁
𝑡=1

20∑︁
𝑗=1

29∑︁
𝑘=21

D𝑗,𝑡,𝑘

A · D𝑗,𝑡,𝑘

B

| |D𝑗,𝑡,𝑘

A | |2 | |D𝑗,𝑡,𝑘

B | |2
,

𝑆finger =
1

20 × 20 ×𝑇

𝑇∑︁
𝑡=1

20∑︁
𝑗=1

20∑︁
𝑘=1

D𝑗,𝑡,𝑘

A · D𝑗,𝑡,𝑘

B

| |D𝑗,𝑡,𝑘

A | |2 | |D𝑗,𝑡,𝑘

B | |2
.

(7)

𝑆palm and 𝑆finger represent the average cosine similarity between
the retargeted hand motion and the GT hand motion. Higher values
indicate better preservation of the original spatial relationships
between the fingers and the palm in the retargeted hand motion.

5.4 Qualitative Results
The results of hand motion retargeting among hands with various
shapes are depicted in Figure 5. The TBS Copy method copies Qtbs

A
to Qtbs

B , while the Copy method copies QA to QB. The DM method
replaces our proposed ASM with the distance matrices proposed by
Zhang et al. [41]. During training, the network did not encounter
any of the source or target hands in the last row. Existing methods
barely account for the intricate spatial relationships between the
fingers and the palm, leading to inconsistent and unnatural hand
motions. In contrast, our method effectively preserves the spatial
relationships between the fingers and the palm, resulting in hand
motions that are more natural and preserve semantics. Figure 10
shows the detailed spatial relationships in the results of our method.

5.5 Quantitative Results
Table 1 shows comparison between our method and existing body
motion retargeting techniques. We compare the methods across
three tasks with different sources and targets: Mixamo to Mixamo
(MX2MX), InterHand to Mixamo (IH2MX), and Mixamo to Inter-
Hand (MX2IH). Because the Mixamo dataset provides paired GT,
we use MSE to assess the quality of the retargeted hand motions
for the MX2MX task. For the other two cross-domain tasks, we
utilize 𝑆palm and 𝑆finger as metrics for the quality of the retargeted
hand motions.

Table 1: Comparison with the state-of-the-arts. Ours𝑤/𝑜L𝑎𝑛𝑎

is the model without anatomical loss in Equation 5.
Ours𝑤/𝑜weight is the model without the weight scheme in
Equation 4.

Methods MX2MX IH2MX MX2IH
MSE↓ 𝑆palm↑ 𝑆finger↑ 𝑆palm↑ 𝑆finger↑

Copy 4.76e-12 0.923 0.851 0.941 0.872
TBS Copy 0.155 0.960 0.883 0.968 0.891

SAN [1] 3.134 0.866 0.820 0.034 0.475
DM [41] 2.788 0.888 0.832 0.891 0.878

Ours𝑤/𝑜L𝑎𝑛𝑎
0.276 0.983 0.932 0.985 0.935

Ours𝑤/𝑜weight 0.420 0.972 0.922 0.980 0.927
Ours 0.452 0.971 0.925 0.978 0.929
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Source Copy TBS Copy SAN DM Ours

Figure 5: Qualitative comparison between the proposed framework and the state-of-the-art methods.

Because the Mixamo dataset may create a new character with an
archived motion by using motion copy, the Copy method has the
lowest MSE. However, as the qualitative results reveal, this does not
mean the motion copy is optimal. Our method achieves a reduction
in MSE of 85.6% and 83.8% compared to SAN [1] and DM [41],
which utilize distinct semantic measurements. Additionally, our
method achieves the highest 𝑆palm and 𝑆finger in the IH2MX and
MX2IH tasks, indicating that its superior ability to preserve the
original spatial relationships between the fingers and the palm
during the retargeted hand motion. This observation suggests that
our proposed ASM outperforms the distance matrices [41] and the
implicit measurement learned in SAN [1].

5.6 User Study
We conduct a user study to evaluate the performance of our frame-
work against Copy, SAN [1], and DM [41]. We invited 26 partic-
ipants and showed them six static hand posture pictures and six
hand motion videos. Each picture and video contains one source
motion and four anonymous results. Participants were instructed
to rank the pictures and videos based on three aspects: preservation
of static posture semantics (PS), preservation of motion semantics
(MS), and motion quality (MQ), from best to worst. The average
rankings are presented in Table 2. Overall, our method achieved
the best performance in all three aspects.

6 CONCLUSION
In this paper, we propose the problem of semantics-preserving hand
motion retargeting. We encode the spatial relationships between

Table 2: Ranking results of the user study. We invite 26 par-
ticipants to compare the retargeting results from three as-
pects: static posture semantics (PS), motion semantics (MS),
and motion quality (MQ).

Methods Ranking
PS ↓ MS ↓ MQ ↓

Copy 3.17 3.31 3.33
SAN [1] 2.95 2.99 3.05
DM [41] 2.70 2.53 2.46
Ours 1.17 1.17 1.16

the fingers and the palm using anatomy-based semantic matrices
(ASM). We train an anatomy-based semantics reconstruction net-
work (ASRN) to retarget the motion semantics of the source hand
onto the target hand, utilizing the source ASM. We evaluate our
framework on both intra-domain and cross-domain retargeting
tasks. Our method demonstrates superior performance to existing
motion retargeting methods, both qualitatively and quantitatively.
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A TWIST-BEND-SPLAY FRAME ANNOTATION

Mixamo Hands

MANO Hands

Figure 6: Our annotation tool allows the user to adjust the
splay axis (red axis) and bend axis (black axis) directions for
Mixamo and MANO hands.

This section presents our frame annotation tool for Twist-bend-
splay. A previous study by Yang et al. [36] introduced A-MANO, a
hand model that incorporates Twist-bend-splay frames. A-MANO,
an extension of MANO, is limited in its applicability to other hand
models. This paper presents the implementation of a versatile frame
annotation tool for Twist-bend-splay, applicable to any hand model
with five fingers and 15-finger joints. The annotation tool can semi-
automatically derive the frame orientation of finger joints for Twist-
bend-splay from the model’s kinematic tree and mesh information.

Specifically, our annotation tool first computes the twist axis
ntwist as the vector from the child of the current joint to the joint
itself. Next, we project rays onto the normal plane defined by ntwist
and perform ray-mesh queries. The ray-mesh hit locations on the
mutually perpendicular axes nsplay and nbend are denoted as psplay
and pbend, respectively. msplay and mbend represent the normal
vectors of the mesh at psplay and pbend, respectively. We iterate
through all the possible axis directions and minimize the following
loss function:

Lannotate = −nspaly ·msplay − nbend ·mbend +
||psplay − o| |2
| |pbend − o| |2

, (8)

where o is the location of the corresponding finger joint. The un-
derlying insight of Lannotate is that the fingers are narrower from
top to bottom but wider from left to right. Therefore, we minimize
| |psplay−o | |2
| |pbend−o | |2 . Moreover, we aim to align the axes with the mesh nor-
mals, thus maximizing nspaly ·msplay + nbend ·mbend. Finally, our
annotation tool displays the frames of Twist-bend-splay on the hand
model, as depicted in Figure 6. If needed, the user can manually
adjust the orientation of the splay and bend axes.

B NETWORK ARCHITECTURE AND
TRAINING DETAILS

As depicted in Figure 7, the proposed Action Sequence Reconstruc-
tion Network (ASRN) architecture comprises twomain components:

Conv Layer

Conv Layer

Static Encoder

Static Encoder

MLP

𝐌!
"#$𝐇! 𝐃%

+

+

𝐐!
"#$

…

…

Figure 7: The network architecture of the proposed ASRN.

the static encoders and the motion reconstruction convolutional
network. Each static encoder consists of one MLP layer and two
ResNet-like convolutional layers. The motion reconstruction con-
volutional network is composed of four ResNet-like convolutional
layers. The input to each layer concatenates the output from the
previous layer and the output from the corresponding static en-
coder. The ASRN takes the source ASM denoted as DA as input
and generates the target joint rotation denoted as Qtbs

B as output.
To train the ASRN, we employ the Adam optimizer [18] with a
learning rate of 10−4 and a batch size of 64. The ASRN is trained
for 100 epochs.

Since the shape parameter HB ∈ RℎB varies based on the model
type, we train an ASRN for each specific form of the shape parame-
ter. In this study, we introduce two ASRNs specifically for MANO
andMixamo. For MANO,HB is represented as a 10-dimensional vec-
tor, while Mixamo represents a 45-dimensional vector. The ASRNs
for both MANO and Mixamo are trained using identical hyper-
parameters. Each network is trained on the InterHand2.6M and
Mixamo datasets, but with distinct target hand models.

C ABLATION STUDY
The qualitative results of two ablated versions of our methods are
illustrated in Figure 8 and Figure 9.

Figure 8 compares the results with and without the inclusion of
the anatomical loss Lana. Excluding Lana leads to a higher occur-
rence of unnatural finger poses, such as the abnormal splay of the
interphalangeal joint of the little finger.

Figure 9 compares the results with and without using the weight-
ing scheme described in Equation 4. The weighting scheme pro-
motes the network’s attention toward proximal joint interactions.
Consequently, the wholemodel produces amotionwhere the thumb
pulp contacts the index fingertip, while the ablated model fails to
achieve this contact.
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Source Ours Oursw/o ℒ!"!

Figure 8: Comparison of results with and without the inclu-
sion of the anatomical loss Lana.

Source Ours Oursw/o weight

Figure 9: Comparison of results with and without the
weighting scheme described in Equation 4.

D SUPPLEMENTARY QUALITATIVE RESULTS
Figure 10 presents additional qualitative results of our method. Our
approach effectively preserves accurate hand motion semantics.

Source Target Source Target

Figure 10: Our frameworkmaintains precise spatial relation-
ships among the fingers.
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