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ABSTRACT
Speech-driven 3D face animation poses significant challenges

due to the intricacy and variability inherent in human facial move-
ments. This paper emphasizes the importance of considering both
the composite and regional natures of facial movements in speech-
driven 3D face animation. The composite nature pertains to how
speech-independent factors globally modulate speech-driven facial
movements along the temporal dimension. Meanwhile, the regional
nature alludes to the notion that facial movements are not globally
correlated but are actuated by local musculature along the spatial
dimension. It is thus indispensable to incorporate both natures for
engendering vivid animation. To address the composite nature, we
introduce an adaptive modulation module that employs arbitrary
facial movements to dynamically adjust speech-driven facial move-
ments across frames on a global scale. To accommodate the regional
nature, our approach ensures that each constituent of the facial
features for every frame focuses on the local spatial movements of
3D faces. Moreover, we present a non-autoregressive backbone for
translating audio to 3D facial movements, which maintains high-
frequency nuances of facial movements and facilitates efficient
inference. Comprehensive experiments and user studies demon-
strate that our method surpasses contemporary state-of-the-art
approaches both qualitatively and quantitatively.
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1 INTRODUCTION
Speech-driven 3D face animation is a crucial technology in the

field of digital avatar synthesis, which has wide-ranging applica-
tions in VR/AR, games, and film-making. However, the intricacy
and variability of human facial movements pose significant chal-
lenges for this task. Human facial movements have two essential
natures: composite and regional. The composite nature refers to
how speech-independent factors, such as talking styles and expres-
sions, globally modulate speech-driven facial movements along the
temporal dimension. For example, different talking styles can affect
the amplitude of mouth opening while speaking the same word.
The regional nature arises because the movement of different facial
parts is not globally connected along the spatial dimension but
rather determined by the action of local muscles. For instance, the
movements of the eyebrows are usually uncorrelated with those
of the jaw. Understanding and modeling composite and regional
natures are crucial for realistic and vivid facial animation.

Several previous studies [10, 12, 32, 40] have attempted to incor-
porate the composite nature into speech-driven 3D face animation
models by fusing speech-independent labels such as emotion, iden-
tity, and style. However, these fused labels are often coarse-grained,
which limits their capacity to capture intricate interactions be-
tween speech-independent factors and speech-driven movements.
To achieve fine-grained control over speech-independent factors,
some approaches [23, 25, 28] have proposed disentangling speech-
driven and speech-independent movements in a single 3D face
sequence. However, these methods tend to oversimplify or only
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Figure 1: The overall framework of our method. The adaptive modulating module incorporates the composite nature of facial
movements into the framework, while the sparsity regularizer interprets the regional nature of facial movements. The overall
backbone is non-autoregressive, which enables efficient training and inference.

focus on local aspects of the composite nature, reducing the expres-
siveness of facial animations. Moreover, previous learning-based
methods tend to overlook the regional nature of facial movements,
while rule-based methods [7, 31, 39, 41] consider such nature but
require extensive manual labor when animating unseen faces. To
address the issues above, there is a critical need to develop a com-
prehensive method that captures a global understanding of the
composite nature and considers the regional nature.

To tackle these challenges, we propose a novel speech-driven 3D
face animation method that considers both facial movements’ com-
posite and regional natures. We introduce an adaptive modulating
module to account for the composite nature. This module inputs
the latent audio features and arbitrary 3D face sequence, extracting
global-aware speech-independent representations and modulating
the latent audio features according to the extracted representations.
To accommodate the regional nature, we propose a sparsity regular-
izer, which, for each frame, enforces each facial feature element to
focus on the local region of mesh vertices. Furthermore, we present
a non-autoregressive backbone for translating audio to 3D facial
movements. We apply the pretrained HuBERT model [14] to extract
high-level audio features and adopt ResNet [13] with 1D convo-
lution to serve as the motion decoder. The overall framework is
shown in Figure 1. Our backbone both enables efficient inference
and preserves high-frequency motion details.

To demonstrate the effectiveness of our framework, we con-
duct extensive experiments on the VOCA [5], MeshTalk [28], and
BIWI [11] datasets. We evaluate our framework against several
state-of-the-art approaches using various quantitative metrics, in-
cluding the lip vertex error, face error, and dynamic time wrapping
error. Moreover, we conduct a user study to evaluate the naturalness
of facial movements and the synchronization between speech and

animation. The experimental results show that our proposed frame-
work outperforms existing methods in terms of both quantitative
metrics and subjective evaluations, verifying that it is beneficial
to consider both composite and regional natures in the task of
speech-driven 3D face animation. The code is publicly available at
https://github.com/wuhaozhe/audio2face_mm2023.

2 RELATEDWORK
Speech-driven face animation has received significant attention

in previous literature. Considerable research has focused on an-
imating 2D faces [1, 4, 6, 9, 12, 15, 18, 19, 26, 29, 36, 44], while
we concentrate on animating 3D faces in this work. In 3D fa-
cial animation, rule-based methods have been previously explored
[7, 31, 39, 41]. These methods rely on breaking down facial move-
ments into smaller units, such as visemes [24] and facial action
units (FAUs) [8], and establishing mappings between speech and
these units. These rule-based methods take into account the re-
gional nature of facial movements, with both visemes and FAUs
designed based on anatomical characteristics of the human face.
As a result, they have achieved satisfactory results in synthesizing
lip motions. However, these methods require extensive manual
labor when animating unseen faces and their performance is lim-
ited in synthesizing speech-independent movements, such as facial
expressions that are not directly related to speech.

With the advent of 4D face datasets [5, 11, 28, 38], various
learning-based methods have emerged [17]. A few methods fo-
cus on driving one particular character [20, 45], while most meth-
ods work on driving different identities [10, 12, 19, 23, 25, 28, 30,
32, 37, 40, 42, 43]. In these methods, researchers have attempted
to consider the composite nature. Some methods regard speech-
independent factors as one-hot labels. For example, methods such
as FaceFormer [10] and CodeTalker [40] treated the one-hot identity
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Figure 2: The t-SNE visualization of how speech-independent
factors influence facial movement distributions. Each point
represents the statistics of one 3D sequence. Points belonging
to different identities are colorized with different colors.

label as speech-independent factors and fused identity label with
speech audio in the Transformer [35] decoder. These two meth-
ods synthesize discrete talking styles for each identity and enable
interpolation between different styles. However, they are limited
to synthesizing unseen talking styles, which poses a challenge for
their practical applications. In the footsteps of the FaceFormer and
CodeTalker methods, the Imitator [32] approach introduced a style
adaptive motion decoder, which allows for fine-tuning on previ-
ously unseen styles. Nonetheless, this fine-tuning process incurs a
significant computational cost and hampers fast generalization. In
addition to identity labels, the SpaceXmethod [12] also incorporates
one-hot emotion labels to generate expressive facial animations.
Although these methods that utilize one-hot speech-independent
labels can produce diverse facial movements, the representation
granularity of speech-independent factors is often too coarse, which
hinders their broader application.

To achieve fine-grained control over speech-independent factors,
several methods [19, 23, 25, 28, 30, 37, 42] have proposed to disentan-
gle speech-driven and speech-independent movements in a single
3D face sequence. Some of these methods achieve disentanglement
in a supervised manner [19, 25, 28], such as the MeshTalk [28]
method, which uses a cross-modality loss to disentangle the speech-
driven and speech-independent facial movements. However, the
assumption made by MeshTalk that speech-driven and speech-
independent movements correspond respectively to the lower and
upper parts of human faces may not hold for all facial expressions or
movements. In contrast, the Emotional Video Portraits (EVP) [19]
and EmoTalk [25] methods improve on MeshTalk by disentangling
speech emotion and speech content through cross-reconstruction
without making such assumptions. Nonetheless, these methods still
require one sentence to be spoken with different emotions, which
poses challenges for dataset collection. Some methods achieve
disentanglement in an unsupervised manner [23, 30, 37, 42], the
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Figure 3: The correlation graph of local facial regions. The
local facial regions are colorized red. The Covself denotes the
self-correlation inside the local region, and the weight of the
edge denotes the correlation between the two regions.

MemFace method [30] uses a latent memory dictionary to disen-
tangle speech-independent factors. In contrast, the GeneFace [42]
method incorporates uncertainty into the synthesis model to repre-
sent speech-independent movements statistically. In addition, some
methods [23, 37] directly extract speech-independent representa-
tions from the reference video and fuse such representations with
audio embeddings. To conclude, while the aforementioned methods
have shown promising results in modeling speech-independent
movements, they tend to oversimplify or only focus on the local
aspects of the composite nature. The global understanding of the
composite nature is lacking in these methods. Moreover, these
learning-based methods neglect the regional nature of facial move-
ments, further hindering the ability to synthesize realistic and vivid
animations. These limitations highlight the need for a comprehen-
sive approach that considers both facial movements’ composite and
regional natures for improved 3D facial animation synthesis.

3 OBSERVATIONS OF 3D FACE ANIMATION
In this section, we systematically investigate the impact of the

composite and regional natures on the 3D face animations. To this
end, we conduct data observations for each nature separately.

We explore the impact of the composite nature by visualizing
how speech-independent factors influence the distribution of fa-
cial movements. Specifically, we calculate the standard deviation
for each vertex of a 3D sequence along the temporal dimension,
then reduce the standard deviations of all 3D mesh vertices to 2D
using t-SNE [34], which we visualize as 2D points. Figure 2 demon-
strates the visualization results. Different colors are used to plot
points belonging to different identities. Our findings suggest that
the speech-independent factor such as speaker identity significantly
impacts the distribution of facial movements.

To investigate the impact of the regional nature on facial move-
ments, we analyze motion correlation across different regions of
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the face. Motion correlation is used to quantify the degree of depen-
dency between the movements of different facial regions. We first
partition facial movements into small regions based on the facial
mesh vertices to obtain the motion correlation. We then calculate
the pairwise correlation coefficient along the spatial dimension be-
tween each pair of regions, resulting in a correlation matrix. Finally,
we visualize this matrix as a connected graph, where edges with
less than 0.5 correlation coefficient are removed. Figure 3 shows the
correlation graph. The correlation graph reveals that the motion
correlation of facial regions is not uniformly distributed, with some
regions being more correlated than others. For example, the mouth
and chin regions, which are responsible for similar expressions,
display a higher correlation, while the upper and lower parts of the
face have a lower correlation.

These findings have important implications for understanding
the underlying mechanisms of 3D facial movements. In the next
section, we propose a framework that comprehensively considers
both composite and regional natures.

4 METHODOLOGY
As mentioned earlier, the composite and regional natures have

a significant impact on facial movements, and it is crucial to take
them into account when generating realistic and accurate 3D face
animations. In this section, we detailedly elaborate on how we inte-
grate these two natures into the speech-driven 3D face animation
framework. Moreover, we introduce our non-autoregressive back-
bone, which preserves high-frequency details of facial animations
and enables efficient inference.

4.1 Problem Formulation
Before introducing the overall framework, we first formulate

the problem of audio-driven 3D face animation in the presence of
speech-independent factors. This task takes three inputs: a template
3D face S̄ of the target person, the driven speech X with duration
𝑇 , and the driven 3D face sequence {S1 · · · S𝑇 ′ }. The objective is to
synthesize a sequence of 3D face animations {Ŝ1 · · · Ŝ𝑇 }. The syn-
thesized animations have the same identity as S̄, are synchronized
to the driven speech X, and incorporate the speech-independent
facial movements of {S1 · · · S𝑇 ′ }.

It is worth noting that we do not synthesize the blendshape
weights of 3D faces but rather directly synthesize the 3D face ver-
tices. There are two main reasons for this choice. Firstly, blend-
shapes often result in a loss of high-frequency facial information,
whereas the 3D face sequence preserves all facial details. By synthe-
sizing 3D face sequences directly, our model can capture intricate fa-
cial movements and fine-grained nuances. Secondly, the blendshape
weight is often limited by its uninterpretable definitions, whereas
directly animating 3D faces has broader applications. Based on such
a setting, all of the input 3D faces and the synthesized 3D faces
have a shape of 𝑁 × 3, where 𝑁 is the number of mesh vertices. For
different datasets, the vertex number 𝑁 is different.

4.2 Adaptive Modulating Module
To incorporate the composite nature in 3D facial animation syn-

thesis, it is essential to effectively combine both speech-independent
and speech-driven facial movements. To achieve this, we propose

the adaptive modulating module, which plays a critical role in
effectively blending these two types of movements. This module
first extracts global-aware speech-independent representations that
capture the facial movements not influenced by the speech signal.
These representations are then used to modulate the latent audio
features, allowing the model to dynamically adjust the contribution
of speech-driven and speech-independent factors to each specific
facial region. By utilizing the adaptive modulating module, our
framework synthesizes more diverse and natural face animations.

Figure 1 shows the adaptive modulating module. The module
extracts the speech-independent representations from {S1 · · · S𝑇 ′ }.
More specifically, for each 3D face S𝑖 , we first normalize S𝑖 by
subtracting the mean face of {S1 · · · S𝑇 ′ }. Formally:

Norm(S𝑖 ) = S𝑖 −
∑𝑡
𝑖=1 S𝑖
𝑡

. (1)

The goal of normalization is to extract solely the facial movement
information while removing the identity information. Subsequently,
we reduce Norm(S𝑖 ) to a low-dimensional feature vector with em-
bedding matrix W. We then concatenate the embedded vector
of the 3D faces into a sequence and input this sequence into a
ResNet1D [13] encoder, thereby obtaining the latent face repre-
sentations Z𝑓 𝑎𝑐𝑒 . Z𝑓 𝑎𝑐𝑒 has a shape of 𝑇

′

4 × 𝐶𝑓 𝑎𝑐𝑒 , where 𝐶𝑓 𝑎𝑐𝑒

is the channel number, and 𝑇
′

4 accounts for the downsampled em-
bedded face vectors along the temporal dimension. Afterward, we
extract the speech-independent facial movements from Z𝑓 𝑎𝑐𝑒 . Dif-
ferent from the previous methods [19, 25, 28] that leverages cross
reconstruction loss to extract speech-independent factors, we ex-
tract the speech-independent information by simply calculating
the mean 𝜇 (·) and standard deviation 𝜎 (·) of Z𝑓 𝑎𝑐𝑒 along the tem-
poral dimension. Remarkably, this simple approach provides an
effective representation of speech-independent information, as it
captures the overall statistical distribution of face animations while
excluding the temporal information of Z𝑓 𝑎𝑐𝑒 .

Having obtained 𝜇 (Z𝑓 𝑎𝑐𝑒 ) and 𝜎 (Z𝑓 𝑎𝑐𝑒 ), we now blend them
with input speech signals. We first feed the input speech to the
pretrained audiomodel [14], yielding the latent audio featureZ𝑎𝑢𝑑𝑖𝑜

with a shape of𝑇 ×𝐶𝑎𝑢𝑑𝑖𝑜 , where𝐶𝑎𝑢𝑑𝑖𝑜 is the channel number of
latent audio features. Afterwards, 𝜇 (Z𝑓 𝑎𝑐𝑒 ) and 𝜎 (Z𝑓 𝑎𝑐𝑒 ) are used
to modulate the mean and standard deviation of Z𝑎𝑢𝑑𝑖𝑜 on a global
level. Specifically, we map 𝜇 (Z𝑓 𝑎𝑐𝑒 ) and 𝜎 (Z𝑓 𝑎𝑐𝑒 ) to 𝜇𝑝𝑟𝑒𝑑𝑖𝑐𝑡 and
𝜎𝑝𝑟𝑒𝑑𝑖𝑐𝑡 with a linear layer, where 𝜇𝑝𝑟𝑒𝑑𝑖𝑐𝑡 and 𝜎𝑝𝑟𝑒𝑑𝑖𝑐𝑡 have the
same channel number as Z𝑎𝑢𝑑𝑖𝑜 . Finally, we adjust Z𝑎𝑢𝑑𝑖𝑜 with a
similar manner as AdaIN [16]:

Z𝑓 𝑢𝑠𝑒 = 𝜎𝑝𝑟𝑒𝑑𝑖𝑐𝑡 (
Z𝑎𝑢𝑑𝑖𝑜 − 𝜇 (Z𝑎𝑢𝑑𝑖𝑜 )

𝜎 (Z𝑎𝑢𝑑𝑖𝑜 )
) + 𝜇𝑝𝑟𝑒𝑑𝑖𝑐𝑡 . (2)

The acquired Z𝑓 𝑢𝑠𝑒 contains both speech driven and speech inde-
pendent information.

4.3 Sparsity Regularizer
When we linearly embed Norm(S𝑖 ) to low-dimensional facial

feature vectors with embedding matrix W, it is necessary to con-
sider the regional nature of the facial movements, or the resulting
feature vectors may fail to capture the subtle details in local regions.

A simple and straightforward method for incorporating region-
ality is to divide the face into several regions according to face
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anatomy and apply a separate embedding matrix to each region.
In this way, each region can be embedded independently and with
greater detail. However, this approach can be labor-intensive as it re-
quires the manual splitting of 3D faces into different regions, which
is time-consuming and require expert knowledge. Alternatively,
some previous methods [5] also initializes W from parametric 3D
face model [22]. Such initialization does help the model to capture
better facial details, but it can only synthesize 3D face mesh which
has the same topology as the parametric 3D face model. When we
switch the 3D face template, this method fails.

Our proposed approach aims to address the issue of regional
nature by leveraging a novel and efficient strategy, which does
not require manual labor and is applicable to different 3D face
templates. To achieve this, we utilize a sparse regularization tech-
nique inspired by Lasso Regression [33]. In particular, we apply
ℓ1 regularization to the embedding matrix W, which encourages
several elements of the weight matrix to be close to zero, resulting
in sparsity. The sparsity enables each element of the feature vector
to focus on the local facial regions. Furthermore, this strategy also
improves the interpretability of the learned weights and leads to
better generalization capability.

4.4 Backbone
Designing an efficient and effective backbone is also crucial for

the task of audio-driven 3D face animation. In this section, we
illustrate how the backbone obtains the latent audio feature Z𝑎𝑢𝑑𝑖𝑜

and how the backbone generates {Ŝ1 · · · Ŝ𝑇 } from Z𝑓 𝑢𝑠𝑒 and S̄.
We utilize the pre-trained HuBERT model [14] for audio encod-

ing. Notice that we have compared HuBERT, wav2vec 2.0 [3], Mel
spectrogram, and DeepSpeech [2] features. Among these features,
we observe that the HuBERT feature performs best. The HuBERT
model is a self-supervised method for learning audio representa-
tions that achieves state-of-the-art performance on various down-
stream tasks. The model is designed to take raw audio waveforms
as input and generate a sequence of high-level representations that
capture various aspects of the audio signal. In our implementation,
we extract the final layer of the HuBERT model and resample the
output with the desired frame rate to obtain the latent audio feature
Z𝑎𝑢𝑑𝑖𝑜 . During the training process, we do not fix the HuBERT
model as the previous method [10] does. Instead, we adopt a warm-
up strategy. More specifically, at the start of training, we fix the
HuBERT model and train the other sub-modules. Once the other
sub-modules almost converge, we unfreeze the HuBERT model to
allow it to fine-tune the task. Such a strategy has the advantage
of preventing the scratch-initialized sub-modules from disturbing
the pre-trained HuBERT model, which already contains useful and
high-quality audio representations. With the warm-up strategy, we
achieve faster convergence and better performance compared to
simply freezing the pretrained audio model.

For the other sub-modules in our backbone, we extensively em-
ploy the ResNet1D [13] structure rather than the Transformer [35]
structure. The ResNet1D conducts 1D convolution on the input
feature vector sequence along the temporal dimension. It has the
following three characteristics: (1) ResNet1D imposes a strong in-
ductive bias on the model architecture, which aggregates informa-
tion from temporal-adjacent frames. Such inductive bias lessens the

required data for training. (2) ResNet1D has a strong capability for
non-linear translation due to the stack of numerous convolution
layers. (3) ResNet1D is a non-autoregressive and fully convolutional
architecture, thereby it requires less computation cost and adapts to
input with arbitrary size. These characteristics tally well with the
task of speech-driven 3D face animation. Usually, the input speech
and 3D facial animation have strict temporal correspondence, such
property has lessened the requirement of building complex time
dependencies. When mapping speech to 3D facial animation, it is
sufficient to fuse temporal information from adjacent frames as the
ResNet1D does. Moreover, the input speech and 3D facial anima-
tion are highly heterogeneous, therefore the powerful non-linear
translation capacity of ResNet1D is in need for our task.

Based on the intuition above, we generate {Ŝ1 · · · Ŝ𝑇 } from Z𝑓 𝑢𝑠𝑒

and S̄ with the ResNet1D decoder. We first embed S̄ with the embed-
dingmatrixWmentioned in Section 4.3, and then add the embedded
vector to each frame of Z𝑓 𝑢𝑠𝑒 . Afterward, the ResNet1D decoder
takes the added embedding as input, and outputs the predicted
movement features Z𝑝𝑟𝑒𝑑 with shape 𝑇 ×𝐶𝑓 𝑎𝑐𝑒 . Based on Z𝑝𝑟𝑒𝑑 ,
we synthesize the 3D face sequences with the following equation:

Ŝi = S̄ + 𝛼W𝑇 × Z𝑝𝑟𝑒𝑑 [𝑖], (3)

where W𝑇 is the transposed matrix of the embedding matrix W.
We scale the predicted movements with a coefficient 𝛼 for faster
convergence, 𝛼 is set to 0.1 in our implementation. Notice that we
have removed all of the downsampling layers in ResNet1D during
the decoding process; all layers have a convolutional kernel with
size 3 and stride 1. Such modification avoids synthesizing over-
smooth animations and retains high-frequency details.

Overall, both the encoder and the decoder of our backbone are
non-autoregressive, thus can be trained in parallel and run effi-
ciently during inference. The non-autoregressive design also allows
for flexible and variable-length input sequences, making our model
applicable to various applications.

Training objectives. We simultaneously optimize the ℓ2 loss
and the sparsity regularization loss. The ℓ2 loss calculates the dis-
tance between the synthesized 3D face sequences {Ŝ1 · · · Ŝ𝑇 } and
the ground truth 3D face sequences {S1 · · · S𝑇 }. The sparsity regu-
larization loss minimizes the ℓ1 norm of W. Formally:

L = Lℓ2 + 𝛽Lreg =

𝑇∑︁
𝑖=1

| |Ŝ𝑖 − S𝑖 | |2 + 𝛽 | |W| |1 . (4)

4.5 Implementation Details
For the HuBERT model, we adopt the HuBERT-large configu-

ration with 24 Transformer layers. For the ResNet1D model, we
adopt the ResNet18 configuration. The mesh embedding matrix W
has a shape of 3𝑁 × 256, where 𝑁 is the number of mesh vertices.
Different datasets have different numbers of mesh vertices. During
training, we leverage the Adam optimizer [21] with learning rate of
10−4. The weight decay of the Adam optimizer is set to 0 because
it contradicts our sparsity regularizer. We train for 120 epochs with
a mini-batch size of 8 samples. In the implementation, the scaling
coefficient 𝛽 of the regularization loss is set to 10−4. We fix the
HuBERT model at the first ten training epochs and unfreeze it at
the subsequent epochs. We leverage one RTX3090 GPU for training.
The training process takes less than one hour.
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Figure 4: Qualitative comparison with baseline methods on MeshTalk dataset (left) and VOCASET (right). The first three
rows show the facial animations when speaking different phonemes. The bottom row shows the standard deviation of facial
animations; red denotes a large standard deviation, while blue denotes a smaller one.

5 EXPERIMENTS
5.1 Experimental Settings

VOCASET dataset [5]. VOCASET contains 480 3D face se-
quences obtained from 12 individuals. The 3D face mesh of each
sequence adopts the template of the FLAME face model [22] with
5023 vertices. We adopt the same training, validation, and testing
splits for fair comparisons as VOCA [5]. Eight individuals are se-
lected for training, two individuals are selected for validation, and
two individuals are selected for testing.

BIWI dataset [11]. The BIWI dataset contains expressive emo-
tions. Each mesh of the BIWI dataset contains 23370 vertices. We
adopt the same evaluation protocol as FaceFormer [10] on the BIWI
dataset. More specifically, we exclude the neutral sentences from
BIWI during evaluation and select only the emotional sentences.
The training set has 192 sentences, the validation set has 24 sen-
tences, and the testing set has 32 sentences.

MeshTalk dataset [28]. The MeskTalk dataset is not fully open-
sourced. Among all of the 250 individuals in the dataset, only the
3D face animations of 13 individuals are publicly available. Each
mesh of the MeskTalk dataset contains 6172 vertices. Among the
13 individuals, we selected nine individuals for training, four for
validation, and two for testing. The testing and validation sets
overlap partially in individuals.

Baseline Methods. We conducted a comparative evaluation
of our proposed framework with three state-of-the-art methods:
VOCA [5], MeshTalk [28], and FaceFormer [10]. While VOCA and
FaceFormer methods are conditioned on the identity label and
driven speech, the MeshTalk method is conditioned on the 3D face

sequence and driven speech. To ensure a fair comparison between
the baseline and our proposed methods, we adopted the evaluation
protocols of the respective methods. For the evaluation of VOCA
and FaceFormer methods, we synthesized 3D face sequences based
on test speech and training identities following the evaluation
protocol of FaceFormer. For the evaluation of the MeshTalk method
and our approach, we follow the evaluation protocol of MeshTalk,
which obtains 3D face sequences from test speech and test 3D face
sequences. During the evaluation process, we took great care to
ensure no information leakage between the synthesized 3D face
sequences and the testing 3D face sequences. The evaluationmetrics
were computed between the synthesized 3D face sequences and the
testing 3D face sequences.

5.2 Quantitative Evaluations
We quantitatively evaluate the synchronization between the

driven audio and the synthesized 3D face animations. To evalu-
ate lip synchronization, we adopted two metrics: maximal lip ver-
tex error (𝐿𝑙𝑖𝑝max) and average lip vertex error (𝐿𝑙𝑖𝑝mean). 𝐿

𝑙𝑖𝑝
max firstly

computes the maximum Euclidean distance of lip region vertices
between the synthesized and the ground truth 3D face and then
averages the error among frames. 𝐿𝑙𝑖𝑝mean calculates the average dis-
tance between lip region vertices. To evaluate the synchronization
of speech-independent movements, we utilize the followingmetrics:
average upper face error (𝐿𝑢𝑝𝑝𝑒𝑟mean ) and average face error (𝐿𝑓 𝑎𝑐𝑒mean).
𝐿
𝑢𝑝𝑝𝑒𝑟
mean and 𝐿𝑓 𝑎𝑐𝑒mean respectively calculate the average Euclidean dis-

tance of the upper and the whole face. Additionally, we calculate
face dynamic time wrapping error (F-DTW), which compares the
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temporal dynamics of the synthesized and ground truth 3D face se-
quences. F-DTWmeasures the similarity of two temporal sequences
by finding an optimal warping path to align the sequences in time.

Table 1 presents the comparison results among the methods. No-
tably, the MeshTalk method shows suboptimal performance due to
its original implementation’s heavy reliance on large-scale training
data, which is not available in our experimental setup. As a result,
the MeshTalk method exhibits inadequate generalization capac-
ity when the training data only comprises around ten individuals.
In contrast, the FaceFormer and our methods have better gener-
alization capacity due to the incorporation of pretrained audio
models [3, 14]. Furthermore, our method outperforms the Face-
Former method by a large margin in terms of lip synchronization
and speech-independent synchronization.

In addition, our method is also computationally efficient due to
the design of non-autoregressive architecture. Our method takes
0.007 seconds to synthesize 1-second 3D face sequences during
inference, while the FaceFormer method takes 0.1 seconds. The
efficiency of ourmethodmakes it practical for real-time applications
such as video conferencing, telepresence, and gaming.

5.3 Qualitative Evaluations
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Figure 5: User study results. The average scores of facial
motion naturalness and audio-visual synchronization are
reported. Higher scores denote better results.

We qualitatively compare our method with baseline methods in
Figure 4. The first three rows give the synthesized 3D faces for dif-
ferent input speeches. For fair comparisons, all methods and input
speeches are required to utilize the same talking style. Our method
generates more realistic and vivid 3D facial movements with better
lip synchronization than the baseline methods. Mainly, our method
exhibits more significant mouth opening and closing movements
for pronouncing /b/ and /p/ and more evident pouting movements
for pronouncing /w/ and /v/. Meanwhile, the baseline methods
affect jaw flapping, resulting in unnatural facial movements.

The bottom row demonstrates that our and FaceFormer methods
synthesize diversified speech-independent facial movements. We
generate a heat map to visualize the intensity of facial movements,
with vertices that exhibit a larger distance of motion appearing in

red. In comparison, those with a shorter distance appear in blue.
We observe that our and FaceFormer methods synthesize more
intense movements for the lip region and the other facial regions. In
contrast, the VOCA and MeshTalk methods tend to synthesize over
smooth movements with little variation in intensity. By generating
more diverse and intense facial movements, our method can create
more vivid and expressive 3D faces, enhancing the overall realism
of the synthesized output.

Additionally, we conduct user studies to evaluate the naturalness
of facial motion and audio-visual synchronization. Specifically, we
randomly select eight audio samples to drive the 3D face animations.
We synthesize the 3D face animations with the same talking style
as the input audio for each method. We invite 14 participants to rate
the facial motion naturalness and audio-visual synchronization. The
participants are asked to provide ratings on two aspects: (1) whether
the facial motion appears natural and (2) whether the audio and
3D face animation are synchronized properly. Participants rate the
mean opinion score (MOS) [27] using a 1-5 scale, with higher scores
indicating better results. Figure 5 reports the results of user studies.
We received feedback from several participants indicating that
VOCA and MeshTalk methods exhibit unnatural facial movements
due to the jaw-flapping effect. Compared with the FaceFormer
method, our method synthesizes facial movements with more subtle
details. Overall, these results highlight the effectiveness of our
proposed method in generating high-quality 3D facial animations.

5.4 Ablation Study

Style 0

Style 1

Style 2

Style 3

Driven
Speech

Figure 6: Visualizations of stylized 3D facial animations
driven by input speech.

We conducted ablation studies to evaluate the effectiveness of
considering composite and regional natures in synthesizing speech-
driven 3D face animations. Specifically, we performed experiments
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Table 1: Comparison with state-of-the-art methods, lower denotes better for all metrics. Our method outperforms baseline
methods in terms of both speech-driven movements and speech-independent movements. Notice that the scaling of metrics
across different datasets is inconsistent due to variations in the scales of the original data.

Dataset VOCASET [5] MeshTalk dataset [28] BIWI dataset [11]

Method 𝐿
𝑙𝑖𝑝
mean 𝐿

𝑙𝑖𝑝
max 𝐿

𝑢𝑝𝑝𝑒𝑟
mean 𝐿

𝑓 𝑎𝑐𝑒
mean F-DTW 𝐿

𝑙𝑖𝑝
mean 𝐿

𝑙𝑖𝑝
max 𝐿

𝑢𝑝𝑝𝑒𝑟
mean 𝐿

𝑓 𝑎𝑐𝑒
mean F-DTW 𝐿

𝑙𝑖𝑝
mean 𝐿

𝑙𝑖𝑝
max 𝐿

𝑢𝑝𝑝𝑒𝑟
mean 𝐿

𝑓 𝑎𝑐𝑒
mean F-DTW

VOCA [5] 0.00324 0.00630 0.00054 0.00091 0.207 2.778 4.968 0.717 1.323 135.5 0.0235 0.0429 0.0089 0.0136 1.948
MeshTalk [28] 0.00350 0.00640 0.00055 0.00092 0.210 2.516 4.556 0.776 1.268 129.3 0.0227 0.0424 0.0082 0.0126 1.779
FaceFormer [10] 0.00212 0.00438 0.00046 0.00077 0.091 2.206 3.885 0.711 1.210 123.9 0.0230 0.0402 0.0092 0.0143 2.047

Ours w/o Composite 0.00171 0.00470 0.00041 0.00064 0.145 1.728 3.474 0.631 0.938 96.6 0.0186 0.0381 0.0071 0.0120 1.491
Ours w/o Regional 0.00166 0.00451 0.00041 0.00063 0.142 1.690 3.416 0.632 0.927 95.6 0.0175 0.0366 0.0069 0.0107 1.376

Ours 0.00161 0.00447 0.00042 0.00065 0.147 1.659 3.382 0.621 0.930 96.2 0.0170 0.0353 0.0068 0.0105 1.330

by selectively removing the composite or regional nature from
our model architecture and synthesizing speech-driven 3D face
animations using the modified models. The quantitative results of
these experiments are reported in Table 1.

The results of the MeshTalk and BIWI datasets reveal that remov-
ing the regional nature from our model has a significant negative
impact on the performance of lip synchronization. This is because
the regional nature allowed our model to focus on specific details of
facial movements around the lips, which are crucial for accurately
synchronizing lipmovements with speech. On the other hand, when
we remove the composite nature from our model, we observed a
decline in performance for synthesizing speech-independent fa-
cial movements. This is because the composite nature enabled our
model to capture global patterns and general trends in facial move-
ments that are independent of speech. It is worth noting that the
VOCASET dataset has minimal speech-independent facial move-
ments, and hence, the performance inside the ablation study was
similar. Our findings suggest that composite and regional natures
are important for synthesizing speech-driven 3D face animations.

with sparsity regularizer w/o sparsity regularizer

Figure 7: The activated region for each element of the mo-
tion features. Blue regions indicate no influence, while red
regions denote high influence, and green regions represent a
transitional influence between blue and red.

We have also created visualizations to showcase the effective-
ness of our method in synthesizing composite and regional facial
movements. Figure 6 shows that our method successfully generates
diverse talking styles for single-driven speech input, highlighting
the ability to effectively capture the nuances and variations in facial
expressions characteristic of different speaking styles. To further
demonstrate the effectiveness of our method, we also draw Figure 7

to illustrate the impact of our proposed sparsity regularizer, which
enforces each facial feature element to focus on the local region
of mesh vertices. By incorporating this sparsity regularizer, our
method can identify and extract interpretable regions for synthesiz-
ing facial movements, leading to more natural and accurate results.
Meanwhile, when the sparsity regularizer is removed, the activated
regions of motion features spread across the face.

Overall, our ablation study provides empirical evidence for the
effectiveness of considering both composite and regional natures
in synthesizing speech-driven 3D face animations. By combining
these two natures, our model can achieve superior performance.

6 CONCLUSION
This paper emphasizes the importance of considering composite

and regional natures in speech-driven 3D face animation. We con-
ducted extensive observations demonstrating that these natures are
prevalent in 3D facial movements. Our proposed comprehensive
3D face animation framework incorporates both of these natures.
To handle the composite nature, we introduced an adaptive modu-
lating module that extracts speech-independent information from
arbitrary 3D face sequences and fuses this information with the
driving audio. To address the regional nature, we proposed a spar-
sity regularizer that enforces each element of the motion feature to
focus on local regions of 3D faces. Furthermore, we designed an effi-
cient non-autoregressive backbone for mapping audio and 3D facial
movements. Our backbone is built on a pretrained HuBERT model
and a ResNet1D network, which preserves high-frequency details
of facial movements. During implementation, our backbone syn-
thesizes one second of facial animations with 30 fps in only 0.007
seconds. Extensive experiments demonstrate that our proposed
framework outperforms baseline methods both quantitatively and
qualitatively, with significantly reduced computational cost.
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