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ABSTRACT
Creating realistic 3D facial animation is crucial for various appli-
cations in the movie production and gaming industry, especially
with the burgeoning demand in the metaverse. However, prevalent
methods such as blendshape-based approaches and facial rigging
techniques are time-consuming, labor-intensive, and lack standard-
ized configurations, making facial animation production challeng-
ing and costly. In this paper, we propose a novel self-supervised
framework, Versatile Face Animator, which combines facial motion
capture with motion retargeting in an end-to-end manner, eliminat-
ing the need for blendshapes or rigs. Our method has the following
two main characteristics: 1) we propose an RGBD animation mod-
ule to learn facial motion from raw RGBD videos by hierarchical
motion dictionaries and animate RGBD images rendered from 3D
facial mesh coarse-to-fine, enabling facial animation on arbitrary
3D characters regardless of their topology, textures, blendshapes,
and rigs; and 2) we introduce a mesh retarget module to utilize
RGBD animation to create 3D facial animation by manipulating
facial mesh with controller transformations, which are estimated
from dense optical flow fields and blended together with geodesic-
distance-based weights. Comprehensive experiments demonstrate
the effectiveness of our proposed framework in generating im-
pressive 3D facial animation results, highlighting its potential as a
promising solution for the cost-effective and efficient production
of facial animation in the metaverse.
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1 INTRODUCTION
Creating 3D facial animation is a complex task with numerous
applications in fields such as movie production and the gaming
industry [4]. With the increasing popularity of the metaverse, the
demand for 3D facial animation has significantly grown. In the
metaverse, users expect to interact with diverse avatars, including
themselves, celebrities, and fictional characters like the Na’vi in
Avatar. These needs necessitate sophisticated facial animation tech-
niques that accurately capture the nuances of human expressions
and emotions. However, creating believable facial animation re-
mains a challenge even for the most skilled animators, Hollywood
filmmakers, or game developers due to the high level of expertise
and the significant amount of time required.

One of the standard approaches for creating 3D facial animation
in the industry is performance retargeting. This method involves
capturing facial motion from a real actor and transferring that mo-
tion to a target 3D avatar [4]. The most common technique for
achieving this is the blendshape-based methods [3, 19, 20]. Blend-
shapes consist of predefined deformations of the facial mesh, which
can be combined to create a wide range of facial expressions using
various input weights. This process allows for transferring facial
motion from a source video to a target character, even if visually
dissimilar. However, creating blendshapes with high flexibility and
rich expressiveness is time-consuming and labor-intensive, as it
may require hundreds of various expressions for a single character.
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For example, in The Curious Case of Benjamin Button, filmmakers
captured 170 blendshapes of Brad Pitt [9]. Additionally, the absence
of a standard configuration for creating blendshapes complicates
cross-mapping between different expression spaces and hinders
motion transfer across distinct avatars. Another prevalent approach
for generating 3D facial animation is facial rigging, which involves
manipulating motion controls to create the desired animation [27].
However, facial rigging is typically an iterative and laborious pro-
cess since no consistent rig can be used for all possible motions.
As a result, the rigging process often becomes a bottleneck in 3D
animation production. Furthermore, varying standards across dif-
ferent software packages make transferring facial motion across
characters with distinct rigs extremely challenging.

Both blendshape-based methods and facial rigging, as discussed
above, are facing similar challenges: (i) they are time-consuming
and labor-intensive, which limits their accessibility to common
users, and (ii) they lack standardization, making it challenging to
transfer facial motion across different characters with varying rigs
or blendshape configurations. These challenges hinder the devel-
opment of the metaverse, where users expect to act on arbitrary
characters in a short set-up time. Motivated by these issues, we aim
to explore a new solution that directly drives the facial mesh with
raw RGBD videos, eliminating reliance on blendshapes or rigs.
To this end, we propose a novel framework, Versatile Face An-

imator (VFA), that combines facial motion capture with motion
retargeting to drive the facial mesh with captured RGBD videos
end-to-end. We aim to model the facial motion in color and depth
fields and generate RGBD animation to drive facial mesh. To achieve
this goal, our framework consists of the RGBD animation module
and the mesh retarget module. First, the RGBD animation module
generates the animated RGBD frame with hierarchical motion dic-
tionaries. It then estimates the correspondence between the source
RGBD image and the animated frame with a distilled flow generator.
More specifically, the RGBD animation module encodes arbitrary
facial motion into a combination of basic transformations in the
motion dictionary and generates the animated frame from coarse to
fine. The flow generator is then trained to estimate a dense optical
flow field for building correspondence between source images and
animated frames. The flow generator is distilled from the RGBD gen-
erator under animated RGBD frames’ supervision, eliminating the
need for extra labels. The mesh retarget module then deforms the fa-
cial mesh with the dense optical flow. It first detects the controlling
points of the mesh automatically and then calculates the geodesic-
distance-based controlling weights of each vertex. Afterward, the
mesh retarget module estimates controlling point transformations
according to the dense optical flow. The transformations are then
blended with calculated weights to deform the mesh.

To summarize, this work makes three main contributions:
• We propose VFA, a novel self-supervised framework that
combines facial motion capture with facial motion retar-
geting in an end-to-end manner, providing a cost-effective
solution for 3D facial animation production.

• We introduce a new method to learn facial motion in both
the color field and the depth field with hierarchical motion
dictionaries and generate RGBD animation coarse-to-fine.

• We present a new pipeline for transferring RGBD animation
to create 3D animation by deforming the mesh with con-
troller transformations, which are estimated from a dense
optical flow field and blended with geodesic-distance-based
controlling weights.

Our approach presents two main advantages: 1) It employs self-
supervised training using raw facial RGBD data, eliminating the
need for annotation or additional configuration; and 2) it can ani-
mate arbitrary 3D characters, regardless of their topology, blend-
shapes, or rigs. A comprehensive set of experiments, encompassing
both qualitative and quantitative analyses, showcases the outstand-
ing performance of our method in generating 3D facial animations
at a relatively low cost. This positions our approach as a promising
solution for 3D facial animation production.

2 RELATEDWORK
Blendshapes and Facial Rigging. Blendshapes, an approximate
semantic parameterization of facial expression, have become the
standard approach to generating realistic facial animation in the
industry [19]. With little computation, an extensive range of expres-
sions can be expressed by linearly combining blendshape targets.
However, hundreds of blendshape targets are required to build an
expression space with enough expressiveness. To reduce this un-
bearable cost, researchers have proposed methods to reduce the
demands of training expressions [3] or to fine-tune the blendshape
model based on a generic prior [20]. To deal with transferring
blendshape weights across different expression spaces, Kim et al.
proposed amethod that animated rendered images in the 2D domain
and then estimated blendshape weights from the retargeted images
[17], which is similar to our proposed framework but can only drive
a particular set of avatars due to the reliance of blendshapes. Facial
rigging is another widely used technique that seeks to build motion
controls and animate the target character [27]. To some extent,
blendshape weights can be seen as a kind of control rig. Several
neural approaches have been proposed to estimate facial rigs from
animation using neural networks [1, 32, 45], which enables mo-
tion transfer across characters. However, both blendshape-based
methods and facial rigging techniques still suffer from their high
configuration costs and lack of standard criteria in production. In
our framework, we aim to model the facial motion of RGBD frames
via 2D facial animation methods. This approach eliminates the need
for blendshapes or facial rigs, reducing the configuration cost while
maintaining satisfactory performance.
Data-driven 3D Facial Retargeting. Facial retargeting tech-

niques have significantly advanced with the development of neural
networks. The Variational Auto Encoder (VAE) [18] has been in-
troduced to disentangle facial identity and expression in the latent
space, allowing for the transfer of facial motion [29, 33]. Recently,
Zhang et al. [43] proposed training character-specific VAE models
to transfer characters’ expressions across different domains. Most
current studies on neural facial retargeting methods are based on
the 3D morphable model (3DMM), which isolates identity and ex-
pressions [8, 21]. Moser et al. [24] inspired our work by proposing
to treat 3D facial retargeting as 2D face swapping between the
actor and the target character. They animated the rendered im-
ages using an unsupervised image-to-image translation model and



Versatile Face Animator: Driving Arbitrary 3D Facial Avatar in RGBD Space MM ’23, October 29-November 3, 2023, Ottawa, ON, Canada

𝛷𝛷
Encoder

RGBD
Generator

𝐴!→#

𝑧$→!

𝑧$→#
Flow 

Generator

distillation

𝛷

Dense Flow
3D Animation

RGBD Animation module

Encoder

MLP

Motion 
Dictionary

Share Weights

𝑤!→# Mesh Retarget module

Automatically 
Select Controllers

Input

Output

Mesh

R
en

de
r

So
ur

ce

DepthRGB

RGB

D
riv

in
g

Calculate Geod-
based Weights

Estimate 
Transformations

Blend 
TransformationsDepth

DepthRGB

Figure 1: An overview of our proposed framework VFA. We generate 3D facial animation with the source mesh and captured
RGBD video as input in an end-to-end manner. Our model consists of an RGBD animation module and a mesh retarget module.
The RGBD animation module encodes source image S to 𝑧𝑆→𝑅 and encodes facial motion from driving frame D to𝑤𝑅→𝐷 using
the motion dictionary D𝑚 . With the composed latent code 𝑧𝑆→𝐷 , the RGBD animation module generates the driven RGBD
frame and estimates a dense optical flow field Φ, which can be used to warp the source image. The mesh retarget module then
warp the source mesh S utilizing information from the animated RGBD pair and dense flow Φ to generate 3D facial animation.

then regressed the 3DMM parameters from the animated images.
However, these methods typically require a large amount of paired
high-accuracy 3D facial data, which is difficult to capture. Addition-
ally, 3DMM-based methods suffer from a lack of expressiveness due
to their linear nature. In our work, we propose to train our method
with RGBD videos which be captured easily using a single Azure
Kinect V2 camera. Our method eliminates the need for paired 3D
facial data and allows arbitrary deformation by warping the facial
mesh with an estimated optical flow field.
2D Facial Animation. Generating 2D facial animation, also

known as face reenactment, has seen rapid progress due to advance-
ments in deep learning. To facilitate the image-to-image translation
model for facial reenactment, researchers have introduced facial
structure representations as prior knowledge, such as facial land-
marks, [5, 35, 40, 42], semantic label maps [28, 34] and optical flows
[22, 26, 41]. However, such semantic labels for supervised learning
are usually difficult to access for training and inference. A self-
supervised motion transfer approach, i.e., the first-order motion
model, was introduced to learn facial keypoint transformations
from raw videos and warp the source image with the estimated
dense optical flow [30]. Based on the first-ordermotionmodel, Hong
et al. proposed to recover facial depth images in a self-supervised
manner and leverage the depth information to generate 2D facial
animation [11]. Wang et al. proposed a novel method called LIA to
drive still 2D images via latent space navigation, which eliminates
the need for explicit structure representations like keypoints and
can discover high-level motion transformations in latent space [38].
However, there remains a gap between 2D face reenactment and
3D facial retargeting, since most methods treat 3D information as
prior knowledge, and few focus on how to transfer facial motion
in the 3D mesh. We bridge the gap by incorporating the depth
information from RGBD videos and modeling facial motion in the
depth field using the depth motion dictionary to generate animated
RGBD frames and subsequently deform the facial mesh.

3 METHODOLOGY
We aim to animate the source 3D facial mesh S of a target avatar
based on the facial motion from a raw RGBD video D captured
by Azure Kinect V2. To achieve this, our proposed end-to-end
framework consists of the RGBD animation module and the mesh
retarget module, as depicted in Fig. 1.
The RGBD animation module is designed to model facial

motion extracted from the driving frame D of video D and transfer
it to the rendered image S from mesh S. Additionally, the RGBD
animation module estimates a dense optical flow field Φ, which can
be used to establish correspondence between the source image and
the animated frame. The estimated dense flow Φ will be utilized in
the mesh retarget module.

Themesh retargetmodule deforms the source meshS with de-
tected facial landmarks as controllers and geodesic-distance-based
controlling weights. The transformations of controllers are esti-
mated using dense flow field Φ from the RGBD animation module
and then are mapped to 3D world space with the animated depth
frames. Finally, the transformations are blended to generate the
desired 3D facial animation frame by frame. In the following, we
will introduce the two modules in detail.

3.1 RGBD Animation Module
3.1.1 Encoder The RGBD animation module is inspired by the LIA
method proposed by Wang et al. [38]. It utilizes an auto-encoder
structure and consists of an encoder and two generators. The en-
coder encodes images to latent codes, and the RGBD generator
decodes these codes and generates animated RGBD frames coarse-
to-fine. Furthermore, the flow generator estimates dense optical
flow fields which will be utilized in the mesh retarget module. In
the following section, we proceed to discuss them comprehensively.

The encoder is designed to learn a latent code 𝑧𝑆→𝐷 to represent
the motion transformation from S toD. However, asWang et al. [38]
point out, it is challenging to learn 𝑧𝑆→𝐷 directly from the input
image pair, as the model needs to model the direction and norm
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Figure 2: An overview of the generator. The generator employs a 6-level pyramid architecture, comprising the warp network
and the refinement network. The warp network utilizes StyleConv [14] to estimate optical flow fields {𝜙𝑖 }61 and masks {𝑚𝑖 }61,
and warps feature maps 𝑥𝑒𝑛𝑐

𝑖
from the encoder. The depth motion dictionaries are introduced to model motion in the depth

field. The refinement network then utilizes convolution layers to generate the animated frames in a coarse-to-fine manner.

of the vector 𝑧𝑆→𝐷 simultaneously. To overcome this challenge,
we assume there exists a reference frame R so that the motion
transformation from S to D can be decomposed as S → R → D.
This allows us to learn the transformations S → R and R →
D independently and then compose them to represent S → D.
We model 𝑧𝑆→𝐷 as the target point in the latent space, which
can be reached from the source point 𝑧𝑆→𝑅 along a path 𝑤𝑅→𝐷

in the latent space. Mathematically, the latent code 𝑧𝑆→𝐷 can be
decomposed as 𝑧𝑆→𝐷 = 𝑧𝑆→𝑅 +𝑤𝑅→𝐷 .
To ensure that the learned latent codes are in the same latent

space, we utilize a single encoder to encode the source image and
the driving image. As depicted in Fig. 1, the encoder encodes the
source image and the driving image as 𝑧𝑆→𝑅 and 𝑧𝐷→𝑅 respectively.
To extract high-level motion information from 𝑧𝐷→𝑅 , we propose
to encode motion via Linear Motion Decomposition [38]. Specifi-
cally, we introduce a learnable orthogonal basis called the motion
dictionary 𝐷𝑚 . Each vector of the motion dictionary represents
a direction di of the motion space. 𝑧𝐷→𝑅 is mapped to a magni-
tude vector 𝐴𝑅→𝐷 by an MLP layer. Then, the latent path𝑤𝑅→𝐷 is
obtained by linearly combining the magnitude vector 𝐴𝑅→𝐷 with
the basis vector di from the motion dictionary 𝐷𝑚 . With the latent
code 𝑧𝑆→𝑅 learned from the source image S and the latent path
𝑤𝑅→𝐷 extracted from the driving frame D, we can obtain 𝑧𝑆→𝐷

which represents the transformation S → D.

3.1.2 Generator We proceed to introduce the RGBD generator and
the flow generator respectively.
The general architecture of the RGBD generator is depicted in

Fig. 2, which consists of the flow and refinement networks. To learn
multi-scale features, the generator employs a 6-level pyramid ar-
chitecture and uses skip connection between layers. The StyleConv
[14] layer is introduced to decode 𝑧𝑆→𝐷 and estimate multiple lev-
els of optical flow fields {𝜙𝑖 }61. These optical flow fields {𝜙𝑖 }61 are
then used to warp the feature maps 𝑥𝑒𝑛𝑐

𝑖
from the corresponding

level of the source encoder. However, as Siarohin et al. [30] pointed
out, the occluded parts of the source image S can not be recovered
by simply warping the image. Consequently, we propose to esti-
mate the masks {𝑚𝑖 }61 along with {𝜙𝑖 }61. The masks are utilized to
mask the occluded region to inpaint in the refinement network. In
this way, the transformed feature map is formulated as:

𝑥 ′𝑖 =𝑚𝑖 ⊙ 𝑓𝑤 (𝑥𝑒𝑛𝑐𝑖 , 𝜙𝑖 ),

where 𝑓𝑤 represents the backward warping function.
The estimated optical flow {𝜙𝑖 }61 provides the pixel-wise cor-

respondence between the source and warped images in the 2D
domain, but it is not enough to model motion in the depth field.
When an object moves relative to the camera’s z-axis, it can alter
the pixel values in the depth frame, which can not be captured by
the optical flow {𝜙𝑖 }61. To address this issue, we introduce the depth
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motion dictionaries {𝐷𝑑𝑒𝑝𝑡ℎ

𝑖
}61 to adequately learn motion in the

depth field. The basis vectors of the depth motion dictionary repre-
sent the direction of the depth motion space. By linearly combining
the basis vectors with the predicted magnitude vector 𝛽𝑆→𝐷

𝑖
, we

estimate the motion in the depth field. This allows us to obtain the
feature map 𝑥𝑑𝑒𝑝𝑡ℎ

𝑖
for generating accurate depth images. 𝑥𝑑𝑒𝑝𝑡ℎ

𝑖
can be expressed as:

𝑥
𝑑𝑒𝑝𝑡ℎ

𝑖
=𝑚𝑖 ⊙ 𝑓𝑤 (𝑥𝑒𝑛𝑐𝑖 , 𝜙𝑖 ) +

𝑀∑︁
𝑗=1

𝛽𝑆→𝐷
𝑖,𝑗 d𝑑𝑒𝑝𝑡ℎ

𝑖,𝑗
,

where𝑀 denotes the size of the depth motion dictionary 𝐷
𝑑𝑒𝑝𝑡ℎ

𝑖
,

and d𝑑𝑒𝑝𝑡ℎ
𝑖,𝑗

represents the basic vectors of 𝐷𝑑𝑒𝑝𝑡ℎ

𝑖
.

In the refinement network, we adopt a coarse-to-fine approach
to generate precise RGBD results. At each layer of the refinement
network, we combine the upsampled results from the previous
layer with inpainted feature maps to generate images. This iterative
process allows us to progressively refine the generated images in
a hierarchical manner, capturing finer details and improving the
overall visual quality of the outputs.

We note that the warp network predicts optical flow fields 𝜙𝑖 to
warp the feature maps 𝑥𝑒𝑛𝑐

𝑖
from the encoder. This poses a chal-

lenge for the mesh retarget module in analyzing the flow fields
and accurately tracking the movement of controlling points dur-
ing animation. To address this challenge, we introduce a dense
flow generator to generate a dense optical flow field, denoted as
Φ, which represents the pixel-wise correspondence between the
input image S and the animated image. The dense flow generator
is trained through distillation from the original generator, utilizing
the warped image from the refinement network and the source
image as training data. This training scheme allows the dense flow
generator to generate Φ without conversion or extra training data.
This approach facilitates the mesh retarget module to track the
transformation of controllers to perform mesh retargeting.

3.2 Mesh Retarget Module
The design of the mesh retarget module is inspired by linear blend
skinning (LBS), the most popular shape deformation algorithm
for real-time animation due to its efficiency and simplicity [15,
16]. Our method modifies the vertex positions while preserving
mesh connectivity to achieve accurate and consistent animation
results for different target meshes. Furthermore, we determine
controlling weights using geodesic distances, which maintain the
mesh topology and produce natural results.
We use an open-source library, Mediapipe [23] to detect facial

landmarks as controllers. These detected landmarks provide rich
semantic information facilitating reasonable and transferable blend
transformations. Then we compute geodesic distances on the mesh
surface between controlling points and mesh vertices. For each
mesh vertex, we assign the 10 nearest controllers to determine the
controlling weights based on the inverse square of the geodesic
distances. We must note that we use geodesic distance instead
of Euclidean distance to preserve the mesh topology. Specifically,
using geodesic distance as the metric ensures that the upper and
lower lip vertices are not mistakenly considered neighbors. Further
details on the comparison are discussed in Section 4.5.

When generating animation frame by frame, we analyze the
flow generator’s dense flow field Φ to estimate controller transfor-
mations. However, these estimated transformations are in the 2D
screen space, while the source meshS exists in 3D world space. The
transformations can not be directly aggregated to deform the mesh.
Therefore, to map the transformation to 3D space, we estimate the
position of controller 𝑣 𝑗 utilizing the depth of its corresponding
pixel and unproject it to the 3D world space using the perspective
matrix. We formulate this process as follows:

v𝑗 = P−1 (𝑣 𝑗 .𝑥, 𝑣 𝑗 .𝑦, 𝑑 (𝑣 𝑗 ), 1)𝑇 ,

where 𝑃 denotes the perspective matrix, and 𝑑 (𝑣 𝑗 ) denotes the
depth value of 𝑣 𝑗 ’s corresponding pixel in the image. We then track
the movement of the controllers with the dense optical flow field
Φ and estimate controller transformations in 3D world space. The
deformed vertex positions can be calculated by linearly combining
the transformations with the controlling weights.
The mesh retarget module plays a critical role in our proposed

framework, bridging the 2D image animation problem and the 3D
facial retargeting problem. By utilizing geodesic-determine control-
ling weights and incorporating depth information from generated
frames, this module enables direct warping of the source mesh S
without blendshapes or rigs. This integration simplifies retarget-
ing facial motion to avatars, making our proposed framework a
cost-efficient solution for creating realistic 3D facial animation.

3.3 Training Losses
In the training stage, the RGBD animation module is trained in
a self-supervised manner to reconstruct the driving frame D. To
further enhance the robustness and performance of our model,
we fine-tune the RGBD module based on the weights of LIA pre-
trained in the VoxCeleb [25] dataset. Four losses are used to train
the RGBD module: a reconstruction loss L𝑟𝑒𝑐 , a perceptual loss
L𝑣𝑔𝑔 , a smooth loss L𝑠𝑚 and a structure preserve loss L𝑠𝑝 .

L𝑟𝑒𝑐 is calculated using L1 distance, while the perceptual loss
L𝑣𝑔𝑔 , proposed by Johnson et al. [13], is calculated on multi-scales
feature maps extracted from the pre-trained VGG-19 network [31].
To improve the quality of the depth image we generated, we

design two depth-related losses: the smooth loss L𝑠𝑚 and the struc-
ture preserve loss L𝑠𝑝 . The smooth loss is designed based on the
Laplacian operator to improve the smoothness of D̂:

L𝑠𝑚 = E
��∇2D − ∇2D̂

��
2,

where ∇2D denotes a Laplacian operator:∇2D(𝑥,𝑦) = D(𝑥 + 1, 𝑦) +
D(𝑥 − 1, 𝑦) + D(𝑥,𝑦 + 1) + D(𝑥,𝑦 − 1) − 4D(𝑥,𝑦)

Furthermore, to preserve the original geometric structure and the
depth discontinuity along the edges in depth frames, we introduce
the structure preserve loss L𝑠𝑝 proposed by Jeon et al. [12]:

L𝑠𝑝 = E𝑝

��� max
𝑞∈Ω (𝑝 )

��∇D(𝑝)
�� − max

𝑞∈Ω (𝑝 )

��∇D̂(𝑝)
�����
2
,

where Ω(𝑝) denotes a local region in the neighborhood of 𝑝 , and
∇D(𝑝) denotes the gradient calculated as: ∇𝑥D(𝑥,𝑦) = D(𝑥 +1, 𝑦)−
D(𝑥 − 1, 𝑦),∇𝑦D(𝑥,𝑦) = D(𝑥,𝑦 + 1) − D(𝑥,𝑦 − 1). In practice, we
set Ω(𝑝) as a 5 × 5 window near the pixel 𝑝 .
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Table 1: Results of Same-identity Reconstruction. We compared our method with three state-of-the-art methods on two datasets:
MMFace4D [39] and VocCeleb [25]. For all metrics except CSIM, the lower, the better.

Method MMFace4D VoxCeleb
L1 LPIPS AKD AED CSIM Depth L1 L𝑠𝑚 L1 LPIPS AKD AED CSIM

FOMM [30] 10.61 0.123 2.822 0.537 0.839 0.040 0.019 12.27 0.128 2.398 0.574 0.814
OSFV [36] 9.32 0.121 2.612 0.528 0.842 0.037 0.017 11.87 0.121 2.385 0.562 0.822
DaGAN [11] 8.13 0.104 2.502 0.529 0.844 0.036 0.015 11.77 0.122 2.542 0.570 0.820
Ours 8.04 0.104 2.312 0.440 0.844 0.030 0.015 11.26 0.119 2.475 0.570 0.820

Table 2: Quantitative Results of Cross-identity Motion Retar-
geting. We compared our method with three state-of-the-art
methods using three designed tasks. The lower video FID
[37] indicates better generation qualities.

Method Vox2→Vox2 MM→Vox2 MM→MM

FOMM [30] 46.86 42.55 42.29
OSFV [36] 45.18 42.81 42.18
DaGAN [11] 46.02 42.01 41.18
Ours 44.47 40.87 40.69

Our full loss function while training the RGBD animation module
is the combination of the four losses discussed above:

L = L𝑣𝑔𝑔 + 𝜆𝑟𝑒𝑐L𝑟𝑒𝑐 + 𝜆𝑠𝑚L𝑠𝑚 + 𝜆𝑠𝑝L𝑠𝑝 ,

where we use three user-define hyperparameters for balance. In
practice, these parameters are set as 𝜆𝑟𝑒𝑐 = 𝜆𝑠𝑚 = 200, 𝜆𝑠𝑝 = 50. It
is important to note that our method exhibits robustness to different
hyperparameter settings. Consequently, we do not demonstrate an
ablation study examining the combined loss function.

4 EXPERIMENTS
4.1 Experiments Settings
Dataset Our model is pre-trained in the VoxCeleb [25] dataset, and
fine-tuned in theMMFace4D dataset proposed by Wu et al. [39].
The MMFace4D dataset is a large-scale facial RGBD video dataset
captured by Azure Kinect V2. During training, we selected 191
identities, used 16,549 videos, cropped the facial region, removed
the background, resized the frames to 256 × 256, and normalized
the frames to the range of [−1, 1]. For testing, we utilized the test
dataset from VoxCeleb [25] and VoxCeleb2 [6] as well as RGBD
videos of 41 unseen identities from MMFace4D.

Baselines Our proposed method is the first neural approach at-
tempting to create 3D facial animation driven by raw RGBD videos
in an end-to-end manner, utilizing estimated optical flow fields to
transform mesh vertices and deform the facial mesh. To provide a
comprehensive evaluation of our method, we compare it with three
state-of-the-art optical-flow-based 2D animation methods: FOMM
[30], OSFV [36] and DaGAN [11]. To animate RGBD images and
drive the 3D mesh under our framework, we modify these methods
and train them on the MMFace4D dataset using the loss function
formulated in Sec. 3.3. Both methods are initialized with pre-trained
weights on VoxCeleb [25].
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FOMM OSFV DaGAN Ours
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Figure 3: User Study of Motion Retargeting. We asked 20
users to evaluate the generated videos’ visual quality and
semantic consistency with the driving video. The score is in
the range of 1-5, and a higher score denotes better.

4.2 Evaluate Metrics
We evaluate the performance of our model based on: (i) reconstruc-
tion fidelity usingL1 and LPIPS metrics, (ii) generated video quality
using video FID, (iii) semantic consistency using average keypoint
distance (AKD), average Euclidean distance (AED) and cosine simi-
larity (CSIM), and (iv) generated depth images quality using L1 and
L𝑠𝑚 in Sec. 3.3. These metrics provide us with a comprehensive
evaluation of our model.

Video FID [37], derived from Fréchet inception distance (FID), is
a metric that assesses both the visual quality and temporal consis-
tency of the generated videos. Lower video FID indicates a higher
quality of the generated videos. In our experiments, we utilize a pre-
trained ResNext101 [10] model to extract spatiotemporal features
and compute video FID as an objective measure of video quality.
AKD aims to measure the difference between the facial land-

marks of the reconstructed frame D̂ and the real frame D. We
adopt the facial landmark detection method proposed by Bulat
and Tzimiropoulos [2] and compute the average distance between
corresponding landmarks as AKD.

AEDandCSIM [42] both evaluate the ability to preserve identity
while generating videos. We extracted identity embedded features
with ArcFace [7], calculated the mean Euclidean distance between
the identity embeddings as AED, and the cosine similarity between
the embeddings as CSIM.

4.3 Quantitative Analysis
To provide a quantitative analysis, we conduct two experiments to
evaluate our framework thoroughly: same-identity reconstruction
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DrivingSource FOMM OSFV DaGAN Ours

Figure 4: RGBD results of cross-identity motion retargeting.
The first column shows the source images, while the second
column shows the driving frames. The following columns
show the transferred results of FOMM [30], OSFV [36], Da-
GAN [11], and our method, respectively.
in Sec. 4.3.1 to assess the quality of our reconstruction, and cross-
identity motion retargeting in Sec. 4.3.2 to evaluate the motion
transfer ability of our approach.

4.3.1 Same-identity Reconstruction In this experiment, we aim to
evaluate the reconstructing ability of our method. For simplicity,
we focus on evaluating the quality of RGBD animation, as it directly
affects the quality of mesh retargeting in our framework. We used
the first frame as the source image (S) and the remaining frames
as driving frames (D) to reconstruct the video. We conducted this
experiment on the MMFace4D dataset and the VoxCeleb test set
and reported the results in Tab. 1.
As Tab. 1 shows, our method achieves the best performance

across all the metrics. Compared with the three baseline methods,
our method achieves the highest reconstruction fidelity in both
datasets, particularly in depth frames. This result further validates
the effectiveness of the depth motion dictionaries proposed in this
paper. While FOMM [30] and OSFV [36] treat the depth informa-
tion as a simple image channel, and DaGAN [11] fails to model
motion in the depth field, our method excels in depth reconstruc-
tion due to the depth motion dictionaries. Furthermore, our method
achieves the highest scores in AKD, AED, and CSIM, indicating its
ability to transfer motion while preserving the identity of the source
character. These results highlight the strength of our multi-level
flow-based generator.

4.3.2 Cross-identity Motion Retargeting In this experiment, we aim
to assess the motion transfer ability of our method. Specifically, we
used source images (S) and driving frames (D) from different video
sequences, which differs from Sec. 4.3.1. We designed three tasks:

Woman Child AlienDriving

Figure 5: Qualitative results from our method. The leftmost
column displays the driving frames. In contrast, the subse-
quent columns exhibit three target characters: a woman, a
child, and an alien. The top row shows the source meshes.
More results are presented in the supplementary material.

driving source images from VoxCeleb2 with videos from VoxCeleb2
(Vox2→Vox2), driving source images from MMFace4D with videos
from VoxCeleb2 (MM→Vox2), and driving source images fromMM-
Face4D with videos from MMFace4D (MM→MM). It’s important to
note that all the images and videos used here were unseen during
the training of our models, ensuring a fair evaluation.

As the ground truth animation videos were unavailable, we used
video FID [44] to assess our generated videos’ visual quality and
temporal consistency. We randomly selected 2200 source images
and driving video clips for each task to generate retargeted videos.
These videos were then downsampled to the resolution of 112× 112
and randomly cut to 32 frames. We computed video FID by calcu-
lating the distance between the generated data and the real data
distributions sampled from the source dataset. The results are pre-
sented in Tab. 2. Our method consistently outperforms the other
methods regarding video FID for all tested tasks, demonstrating
superior motion transfer ability. To provide an intuitive demon-
stration of the performance of the four methods, we show some
transferred RGBD results in Fig. 4. FOMM produced some artifacts,
such as a puffy face, while OSFV generated noisy results in color
and depth frames. Although DaGAN transferred the facial motion
better, it did not preserve the identity well. In contrast, our method
generated the most natural and clearest color frame and the clean-
est and smoothest depth frame, achieving the best performance in
transferring the facial motion of RGBD frames.

To further compare the effectiveness of our method with baseline
methods, we conducted a user study. Each participant was asked to
evaluate and rate the videos generated by the methods. Specifically,
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(a) Wave-lip artifact (b) Our method

Figure 6: Comparison of mesh retargeting results. (a) Wave-
lip artifacts are caused by using Euclidean distance to calcu-
late blend weights𝑤𝑖, 𝑗 . (b) More natural results are obtained
with our method using geodesic distance to determine𝑤𝑖, 𝑗 .
we randomly generated groups of videos. Each video group con-
tained a video generated by our method and three videos generated
by the three baselines. These video groups and their corresponding
driving videos were presented to 20 human raters. The raters were
asked to evaluate the video’s visual quality and semantic consis-
tency. As Fig. 3 reported, our method obtained the highest scores,
which means that our method generates the most realistic video
while transferring facial motion from driving videos.

Notably, the three baselines rely on facial keypoints transfor-
mation, so their performance may be affected by the accuracy of
the keypoint detector. However, our method captures facial motion
by hierarchical motion dictionaries and generates RGBD frames
coarse-to-fine, which facilitates realistic motion retargeting.

4.4 Qualitative Analysis
In Figure 5, we present qualitative examples of our proposedmethod.
Specifically, we recorded an RGBD video using the Azure Kinect V2
to drive the facial expressions of three target characters: a woman, a
child, and an alien. Despite the dissimilarity between the actor and
the target characters, our method generated impressive results and
accurately retargeted facial motion, particularly the motion of the
mouth, and transferred micro-expressions, such as eye-widening,
squinting, and mouth stretching. Furthermore, our method demon-
strated impressive ability in animating the alien avatar, which had a
significantly different appearance from the actor and was not seen
during the training phase. However, expressions such as rolling
eyes, gazing, and sticking out the tongue could not be transferred
to the target character, as the target mesh did not model eyes and
tongue separately. Overall, our results demonstrate the potential of
our method as a novel solution for generating 3D facial animation.

4.5 Ablation Study
4.5.1 Controlling Weights Calculation As discussed in Section 3.2,
using geodesic distances to calculate controlling weights is crucial
for producing accurate retargeted results. To further verify this
assertion, we present a case study. When controlling weights are
calculated using Euclidean distance, artifacts such as the wave-lip
artifact can occur when the mouth is open, as illustrated in Fig. 6(a).
This is because the movement of controlling points from the lower
lip heavily influences the vertex of the upper lip. However, calculat-
ing blend weights using geodesic distance can avoid such artifacts,
as the controlling points of the lower lip will not be considered

Table 3: Ablation Study on Depth Motion Dictionary.

Size of 𝐷𝑑𝑒𝑝𝑡ℎ

𝑖

MMFace4D VoxCeleb
L1 LPIPS Depth L1 L1 LPIPS

0 8.64 0.118 0.043 11.42 0.129
5 8.04 0.104 0.030 11.26 0.119
10 8.71 0.116 0.036 11.69 0.126
20 8.73 0.119 0.035 11.35 0.127

neighbors of the vertex in the upper lip. Therefore, our method
generates more natural results, as shown in Fig. 6(b).

4.5.2 Depth motion dictionary We provide an in-depth analysis of
our design of the depth motion dictionaries {𝐷𝑑𝑒𝑝𝑡ℎ

𝑖
}61 in the gen-

erator, as discussed in Sec. 3.1.2. We focus on whether introducing
𝐷
𝑑𝑒𝑝𝑡ℎ

𝑖
benefits the generation of RGBD frames and determine the

optimal number of basis vectors that 𝐷𝑑𝑒𝑝𝑡ℎ

𝑖
requires.

Here we performed the same task as discussed in Sec. 4.3.1, and
reported the reconstruction faithfulness metrics, i.e., L1, and LPIPS.
As shown in Tab. 3, the depth motion dictionary 𝐷

𝑑𝑒𝑝𝑡ℎ

𝑖
indeed

benefits the reconstruction ability of our method, especially in
terms of depth image generation. Notably, when the size of 𝐷𝑑𝑒𝑝𝑡ℎ

𝑖
is set to 5, our model achieves the best reconstruction results, which
indicates that a few basic transformations can represent the depth
motion space. Thus, a small depth motion dictionary is sufficient
to model facial motion in the depth field.

5 CONCLUSION
In this paper, we propose a novel self-supervised framework, Ver-
satile Face Animator, for transferring facial motion from captured
RGBD videos to 3D facial meshes to create 3D facial animation.
Our framework comprises two modules: a flow-based RGBD ani-
mation module that animates RGBD frames with hierarchical mo-
tion dictionaries and a mesh retarget module that performs 3D
facial retargeting using blend transformations. Our end-to-end ap-
proach eliminates the need for labor-intensive and time-consuming
blendshape-based methods or facial rigging techniques. Extensive
experiments demonstrate that our framework is a promising and
cost-efficient solution for generating 3D facial animation compared
with existing literature. However, there are still some limitations to
our method. The RGBD animation module may not perform well
in some occluded cases, and more training data may be required to
improve retarget performance for unseen avatars. Additionally, the
estimation of the controller transformations and the accuracy of the
generated depth frames significantly influence the realisticness of
the retargeted mesh. In future work, we plan to focus on improving
the quality of generated RGBD frames and the versatility of our
framework for 3D facial animation production. We believe that the
simplicity, efficiency, and versatility of our framework are crucial
steps toward the future of the metaverse.
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