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ABSTRACT
Temporal Sentence Grounding aims to retrieve a video moment
given a natural language query. Most existing literature merely
focuses on visual information in videos without considering the
naturally accompanied audio which may contain rich semantics.
The few works considering audio simply regard it as an additional
modality, overlooking that: i) it’s non-trivial to explore consistency
and complementarity between audio and visual; ii) such exploration
requires handling different levels of information densities and noises
in the twomodalities. To tackle these challenges, we proposeAdap-
tive Dual-branch Promoted Network (ADPN) to exploit such con-
sistency and complementarity: i) we introduce a dual-branch pipe-
line capable of jointly training visual-only and audio-visual branches
to simultaneously eliminate inter-modal interference; ii) we de-
sign Text-Guided Clues Miner (TGCM) to discover crucial locat-
ing clues via considering both consistency and complementarity
during audio-visual interaction guided by text semantics; iii) we
propose a novel curriculum-based denoising optimization strategy,
where we adaptively evaluate sample difficulty as a measure of
noise intensity in a self-aware fashion. Extensive experiments show
the state-of-the-art performance of our method.1
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Figure x: Consistency and Complementarity in Temporal Sentence Grounding (TSG)

Consistency: in the ground truth segment, visual content in image frames and the sound 

of footsteps in audio waves consistently match the semantic of phrase “walks down 

stairs” in the query.

Complementarity: in the ground truth segment, it’s hard to recognize discriminative 

behavior to locate “laughing” in the query but laughter in audio waves provides 

complementarity clues for location.

Query:

Ground Truth

A person walks down stairs

drinking from a glass bottle.

(a) Consistency

Query: Person starts laughing.

Ground Truth

(b) Complementarity

Figure 1: An illustration of (a) consistency and (b) comple-
mentarity in TSG. (a) Visual content and sound of footsteps
consistently match “walks down stairs”. (b) It’s difficult to
recognize discriminative action visually to localize “laugh-
ing” but laughter provides complementary locating clues.

1 INTRODUCTION
Temporal Sentence Grounding (TSG) [1, 11] aims to retrieve one
moment from an untrimmed video that semantically matches a de-
scriptive natural language query [21]. For a long time, existing
works on TSG [39, 46, 60, 61] merely consider static frames in
videos. Inspired by multimodal learning, recent TSG works [1, 9,
26] integratemultiplemodalities in videos and fuse them to achieve
better performance, where all the modalities derive from visual in-
formation including but not limited to RGB images, optical flows,
depth etc. However, these works ignore the naturally accompa-
nied audio signals in videos, which may contain useful and rich
semantics as well. Audio signals are consistent with visual signals
both temporally and semantically, providing discriminative clues
as a complement when visual information is missing or unrecog-
nizable. Research [2, 17, 37, 38, 40, 41] in many other video analysis
tasks such as video object segmentation and video event recogni-
tion have proved that audio does contribute to deeper understand-
ing of objects and activities in videos. As shown in Figure 1, TSG
benefits from audio as well, so it’s worth exploring to combine vi-
sual and audio modalities for better moment localization.

Though a fewworks [8, 31] consider the audio modality for TSG,
they suffer from the following limitations. First, they merely treat
audio as an additional modality homogeneous to other modalities
and employ neural network architectures regardless of different
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modalities, thus leaving the consistency and complementarity be-
tween audio and visual insufficiently explored. Besides, they ig-
nore the importance of texts when modeling the audio-visual in-
teractions, in which the textual queries may contain semantics for
localization shared by other modalities.

Therefore, in this paperwe study theAudio-enhancedTemporal
Sentence Grounding (ATSG) to overcome these limitations, where
audio serves as an auxiliary modality, aiming to capture more ac-
curate locating clues with comprehensive utilization of both vi-
sual and audio, especially when visual modality collapses. How-
ever, handling ATSG poses the two challenges: i) it’s non-trivial to
explore the consistency and complementarity between audio and
visual; ii) such exploration requires the ability to handle different
levels of information densities and noises in the two modalities
since audio is usually less informative and contains noisy informa-
tion.

To solve the challenges, we propose an Adaptive Dual-branch
Promoted Network (ADPN) for ATSG to better capture locating
clues with the introduction of audio. i) To utilize extra semantics
from audio while suppressing the inter-modal interference when
more modalities are introduced, we design a dual-branch pipeline
to fill the information gap by jointly training visual-only and audio-
visual branches, which contributes to maintaining valid informa-
tion from visual when audio is redundant or noisy. ii) To better
model the audio-visual interactions, we design a transformer-based
Text-Guided Clues Miner (TGCM) to exploit both consistent and
complementary components across audio and visual with the se-
mantics of textual queries as guidance, where textworks as a bridge
to transfer shared semantics to audio and visual features, discov-
ering the crucial locating clues in this process. iii) In order to ef-
fectively separate and eliminate noisy information, we consider
the denoising process as handling the modality imbalance prob-
lem and design a curriculum learning strategy. More specifically,
we develop a set of difficulty evaluation criteria to approximately
measure the noise intensity from the outputs of two branches and
adaptively adjust the optimization process of these two branches
by re-weighting specific loss functions.

We conduct extensive experiments on Charades-STA [11] and
ActivityNet Captions [19] benchmark datasets, showing that our
ADPN achieves state-of-the-art performance against baselinemeth-
ods. Besides, ablation studies indicate that our ADPN is able to
eliminate noise in audio by maintaining significant semantics in
visual, and can capture key locating clues from audio especially
when visual information is damaged. Finally, we conduct case stud-
ies to illustrate how our ADPN benefits from the consistency and
complementarity between audio and visual, providing interpretabil-
ity to our method.

To sum up, our contributions can be summarized as follows:

(1) We study the Audio-enhanced Temporal Sentence Ground-
ing (ATSG) and propose theAdaptiveDual-branch Promoted
Network (ADPN) to introduce audio.

(2) We design the Text-Guided CluesMiner (TGCM) to discover
crucial clues during the interactions of text, audio and vi-
sual, taking both consistency and complementarity into con-
sideration.

(3) We design a novel curriculum learning strategy, where we
measure difficulty for training samples in a self-aware fash-
ion and adjust the optimization process adaptively to de-
noise the audio modality.

(4) Extensive experiments demonstrate that ourADPN achieves
competitive performance against baselines and obtains sig-
nificant performance improvement with the assistance of
audio modality.

2 RELATEDWORKS
Temporal Sentence Grounding (TSG). TSG [1, 11] aims to re-
trieve a video segment given a natural language query, which re-
quires understanding correlations in multiple modalities. Existing
supervised TSG methods can mainly be grouped into two cate-
gories: (1) Proposal-based methods [4, 11, 58, 61, 64] search for
candidate segments and match them with the query. (2) Proposal-
free methods [24, 39, 59, 60] model the prediction of start-and-end
timestamps as a regression problem. Besides, a few works explore
to combine these two paradigms [27, 54] to balance the perfor-
mance and efficiency. An important part of all of them is the in-
teraction or fusion between queries and videos. Most TSG works
only focus on the RGB information from videos and model the
interaction or fusion within queries and videos by technologies
such as Attention Mechanism [4, 10, 39, 56, 58, 62, 63], Hadamard
Product [39, 64], Convolutional Neural Networks (CNN) [39, 58],
and Graph Neural Networks (GNN) [7, 28, 49]. For more reason-
able queries-videos semantic alignment, some works [51, 60, 63]
explore to adopt multi-level/-stage interaction fashions.

Since it’s difficult to capture complicated and subtle semantics
merely from RGB, recent TSG works incorporate more modalities.
MCN [1] integrates RGB images and optical flows with late fusion
strategy. Chen et al. [9] find the redundancy in RGB and integrate
RGB images, optical flows and depth modalities from videos by a
dynamic fusionmechanismwith transformers. Liu et al. [26, 29] ar-
gue that low-level information from consecutive RGB frames fails
to describe complicated activities and introduce optical flow infor-
mation [26] and object features [26, 29] in addition to RGB images
for motion-awareness.

However, these modalities still derive from visual information
and share similar semantics, which are not able to provide compre-
hensive clues for moment localization, so a few TSG works take
audio into consideration. PMI-LOC [8] adopts RGB, motion and
audio and designs pairwise modality interactions in both sequence
and channel levels. UMT [31] proposes a unified multimodal trans-
former framework to fuse visual and audio. However, they ignore
the information gap between audio and visual modalities. We pro-
pose a dual-branch mutually-promoted pipeline with a carefully
designed Text-Guided Clues Miner (TGCM) to fill this gap.
Curriculum Learning. Curriculum learning, first proposed by
Bengio et al. [3], is a training strategy inspired by human curric-
ula that means training a model from easier to harder data. It can
be generalized to modulating the training process guided by a diffi-
culty measure, which is not limited to changing the exposure order
of training data. Wang et al. [53] argue that curriculum learning
can be unified into the general framework of Difficulty Measurer +
Training Scheduler and various curriculum learning strategies can
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Figure 2: (a) An overview of our proposed Adaptive Dual-branch Promoted Network (ADPN) for ATSG, in which two branches,
visual-only and audio-visual, are jointly trained. The output of the audio-visual branch is used to predict the start-and-end
timestamps. (b) A detailed diagram of Text-Guided Clues Miner (TGCM), where text works as a bridge to transfer shared
information to audio and visual modalities. (c) Our self-aware difficulty evaluator takes the probability distributions of the
start-and-end timestamps from two branches as input and generates three difficulty grades to adjust the optimization process.

be categorized to Pre-defined Curriculum Learning [3, 44], Self-
paced Learning [20, 36], Transfer Teacher [14, 65], Reinforcement
Learning Teacher [13, 35] etc. based on this framework. Since sam-
ples with noise can be seen as hard samples, curriculum learning
has been used to denoise the learning process in many machine
learning problems [6, 34, 45].

ImbalancedMultimodal Learning.Audiomay accompany noisy
information that would destroy the audio-visual consistency and
complementarity. For example, background music in some user-
generated videos often has weak semantic correlations with visual
content, which may mislead the model to learn from this noise and
forget valid information from the visual modality. However, exist-
ing TSG methods [8, 31] neglect this problem when introducing
the audio modality. One similar problem is the modality imbalance
problem, which means some modalities are not perfectly trained
because of interference from other modalities. It has aroused much
attention in the field of multimodal and machine learning [16, 52].
Many works try to alleviate it from the perspective of optimization
to coordinate the learning process for different modalities. Wu et
al. [55] defines the Conditional Learning Speed for each modal-
ity and takes re-balancing optimization steps according to it. Jiang
et al. [17] designs an additional Unidirectional Guiding Loss to
transfer unimodal discriminative knowledge to multimodal learn-
ing branches. Peng et al. [42] proposes On-the-fly Gradient Mod-
ulation to adaptively control the optimization for each modality.

Drawing inspiration from this, we design a curriculum learning
strategy to coordinate audio-visual learning, where we remove de-
fective gradients guided by a self-aware difficulty evaluator.

3 PROPOSED METHOD
In this part, we elaborate on our Adaptive Dual-branch Promoted
Network (ADPN) (Figure 2 (a)). After giving the problem formula-
tion (Section 3.1), we describe the technical details of feature encod-
ing (Section 3.2) and text-audio / visual fusion (Section 3.3). Then,
we describe our dual-branch architecture (Section 3.4) which en-
hances audio-visual learning by jointly-training strategy. Within
the audio-visual branch, to discover shared key locating clueswithin
text, audio and visual modalities, we design a Text-Guided Clues
Miner (TGCM) (Section 3.5) tomodel audio-visual interaction guided
by text semantics. Finally, we introduce our curriculum learning
strategy (Section 3.6) where we adjust the optimization process
adaptively.

3.1 Problem Formulation
In ATSG, a piece of training data can be formalized as (Q,V, y),
where Q, V, y are query input, video input, and the ground truth
start-and-end timestamps, respectively. Query input is formalized
as Q = {w𝑖 }

𝐿𝑞
𝑖=1; video input V can be divided into audio and vi-

sual modalities i.e. V = {X𝑣,X𝑎}, where X𝑣 = {x𝑣𝑡 }
𝑇𝑣
𝑡=1 and X𝑎 =
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{x𝑎𝑡 }
𝑇𝑎
𝑡=1. The goal is to predict start-and-end timestamps, whose

ground truth annotations are (𝑦𝑠 , 𝑦𝑒 ), denoted as y.

3.2 Feature Encoding
Queries.We encode the queries in multiple granularities.Theword-
level featuresQ = {w𝑖 }

𝐿𝑞
𝑖=1 ∈ R𝐿𝑞×𝐷 are generated from both word

and character embeddings. Then we pass Q into a self-weighted
pooling layer to get the sentence-level features Q𝑠 ∈ R𝐷 . To bal-
ance expressiveness and computational costs in the two features,
we adopt a recurrent approach inspired by [39] to compress a sen-
tence into several semantic entity-level features Q𝑒 = {e𝑖 }𝐿𝑒𝑖=1 ∈
R𝐿𝑒×𝐷 where 𝐿𝑒 ≪ 𝐿𝑞 . We calculate 𝐿𝑒 guidance vectors Q𝑔 =

{g𝑖 }𝐿𝑒𝑖=1 ∈ R𝐿𝑒×𝐷 with different focuses in a recurrent way and use
Q𝑔 as query vectors to extract semantic entity-level featuresQ𝑒 by
attention mechanism. In the 𝑛-th step, we first calculate 𝑔𝑛 :

g𝑛 = ReLU(W𝑔 ( [W𝑔𝑞
𝑛 Q𝑠 ; e𝑛−1])) (1)

where W𝑔 ∈ R𝐷×2𝐷 and W𝑔𝑞
𝑛 ∈ R𝐷×𝐷 are learnable parameters

andW𝑔𝑞
𝑛 is step-specific; [; ] denotes concatenation operation.The

semantic entity in the previous step e𝑛−1 is incorporated to intro-
duce historical information during recurrences. Then we use addi-
tive attention on word-level features Q to generate e𝑛 :

C(𝑛) = softmax(w𝑐⊤ (tanh(W𝑐𝑔g𝑛 +W𝑐𝑞Q⊤)))

e𝑛 =

𝐿𝑞∑
𝑖=1

𝑐
(𝑛)
𝑖 w𝑖

(2)

wherew𝑐 ∈ R𝐷
2 ×1,W𝑐𝑔 ∈ R𝐷

2 ×𝐷 andW𝑐𝑞 ∈ R𝐷
2 ×𝐷 are learnable

parameters; C(𝑛) = {𝑐 (𝑛)𝑖 }𝐿𝑞𝑖=1.
To extract more diversified semantic entity-level features, we

follow the regularization technique in [25, 39] as our loss ℓ𝑒 to force
attention weights less similar to each other:

ℓ𝑒 = ∥(C⊤C) − 𝜂I𝑒 ∥2𝐹 (3)

whereC ∈ R𝐿𝑞×𝐿𝑒 is the attention weights when generatingQ𝑒 ; ∥ ·
∥𝐹 denotes Frobenius norm; I𝑒 ∈ R𝐿𝑒×𝐿𝑒 is an identitymatrix;𝜂 is a
hyperparameter to control the overlapping extent across different
weight distributions.

Videos.We extract audio and visual features by pretrained mod-
els and project them to the same dimension. After that, we add posi-
tional encoding to them and finally obtain X𝑎 = {x𝑎𝑡 }

𝑇𝑎
𝑡=1 ∈ R𝑇𝑎×𝐷

and X𝑣 = {x𝑣𝑡 }
𝑇𝑣
𝑡=1 ∈ R𝑇𝑣×𝐷 .

3.3 Text-Audio/Visual Fusion
To highlight the part in audio/visual that’s semantically relevant
to the query, we modulate audio/visual features by query seman-
tics in a fine-grained manner inspired by [58]. We linearly scale
and shift audio/visual features by a dynamically computed sen-
tence representation attended by each temporal feature unit in au-
dio/visual. We use semantic entity-level features other than word-
level features to improve efficiency. For the convenience of nota-
tion, we omit the superscript/subscript (·)𝑚/(·)𝑚 (𝑚 ∈ {𝑎, 𝑣}) in
this section since we model the text-audio (T-A) and text-visual
(T-V) interactions in the same way. In detail, we compute a con-
densed representation e(𝑖 ) from semantic entity-level features Q𝑒

attended by the 𝑖-th feature unit of x𝑖 :

A(𝑖 ) = softmax(w𝛼⊤ tanh(W𝛼𝑞Q𝑒⊤ +W𝛼𝑥x𝑖 + b𝛼 ))

e(𝑖 ) =
𝐿𝑒∑
𝑛=1

𝛼
(𝑖 )
𝑛 e𝑛

(4)

wherew𝛼 ∈ R𝐷×1,W𝛼𝑞 ∈ R𝐷×𝐷 ,W𝛼𝑥 ∈ R𝐷×𝐷 and b𝛼 ∈ R𝐷 are
learnable parameters; A(𝑖 ) = {𝛼 (𝑖 )

𝑛 }𝐿𝑒𝑛=1. Then we scale and shift x𝑖
by coefficients 𝛽𝑖 and 𝛾𝑖 :

𝛽𝑖/𝛾𝑖 = tanh(W𝛽/𝛾e(𝑖 ) + b𝛽/𝛾 )
x′𝑖 = 𝛽𝑖 · x𝑖 + 𝛾𝑖

(5)

where W𝛽 ∈ R1×𝐷 , W𝛾 ∈ R1×𝐷 , b𝛽 ∈ R and b𝛾 ∈ R are learnable
parameters. We denote {x′𝑖 }

𝑇
𝑖=1 as X′.

After that, we adopt Context-Query Attention [47, 57, 62] to
further model text-audio / -visual interaction. We first compute a
similarity matrix S ∈ R𝑇×𝐿𝑒 in the same way as [62], in which S𝑖, 𝑗
indicates the similarity between 𝑖-th audio/visual feature and 𝑗-th
semantic entity-level feature.

S = X′W𝑠𝑥 + (Q𝑒W𝑠𝑞)⊤ + (X′ ⊙ W𝑠 )Q𝑒⊤ (6)

where W𝑠𝑥 ∈ R𝐷×1, W𝑠𝑞 ∈ R𝐷×1 and W𝑠 ∈ R1×𝐷 are learnable
parameters; ⊙ denotes Hadamard product. S is computed with di-
mension expansion when calculated.Then we calculate context-to-
query (S𝑐2𝑞 ∈ R𝑇×𝐷 ) and query-to-context (S𝑞2𝑐 ∈ R𝑇×𝐷 ) atten-
tion weights as:

S𝑐2𝑞 = S𝑟Q𝑒 , S𝑞2𝑐 = S𝑟 S𝑐⊤X′ (7)

where S𝑟 ∈ R𝑇×𝐿𝑒 and S𝑐 ∈ R𝑇×𝐿𝑒 are row- and column-wise nor-
malization of S by softmax. We then compute audio/visual features
X ∈ R𝑇×𝐷 fused by text:

X = FFN( [X′; S𝑐2𝑞 ;X′ ⊙ S𝑐2𝑞 ;X′ ⊙ S𝑞2𝑐 ]) (8)

where FFN is a feed-forward network; ⊙ denotes Hadamard prod-
uct.

Finally, we concatenate the sentence-level embedding Q𝑠 to X
and pass it through a linear layer to keep the same dimension. For
convenience, we still use X for notation.

3.4 Dual-Branch Architecture
To maintain the key locating clues in visual while taking advan-
tage of the audio-visual interaction, we split the data flow into two
branches: audio-visual and visual-only, and train them jointly. The
audio-visual branch takes audio, visual and text as input and fuses
them to obtain prediction, while the visual-only branch gives pre-
diction only by visual features.

When we get X𝑎
= {x𝑎𝑖 }

𝑇𝑎
𝑖=1 ∈ R𝑇𝑎×𝐷 and X

𝑣
= {x𝑣𝑖 }

𝑇𝑣
𝑖=1 ∈

R𝑇𝑣×𝐷 , we re-sample X
𝑎 to the same length of X𝑣 and we pass

them through TGCM in the audio-visual branch to perform their
interaction, which will be elaborated on in Section 3.5. After that,
we get audio-visual fused features X𝑓

= {x𝑓𝑖 }
𝑇𝑓
𝑖=1 ∈ R𝑇𝑓 ×𝐷 where

𝑇𝑓 = 𝑇𝑣 .
The following operations are the same for the two branches, so

we omit the superscript/subscript (·)𝑚/(·)𝑚 (𝑚 ∈ {𝑓 , 𝑣}) in the
following part of this section.We adopt self-attentionwith residual
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connection to capture global correlations across audio and visual
for X𝑓 and capture intra-modal correlations in visual for X𝑣 .

X̃ = self-attn(X) + X (9)

where self-attn denotes the self-attention layer.
Finally, we use a transformer-based predictor following [62] to

generate the probability distributions of start-and-end timestamps
i.e. 𝑃𝑠/𝑒 = pred(X̃), which can be detailed as follows:

H𝑠 = multi-head_self-attn(conv1d(X̃))
H𝑒 = multi-head_self-attn(conv1d(H𝑠 ))

𝑃𝑠/𝑒 = softmax(FFN( [H𝑠/𝑒 ; X̃]))
(10)

wheremulti-head_self-attn, conv1d and FFN denote themulti-head
self-attention layer, channel-wise separable 1D convolution and
feed-forward network, respectively; 𝑃𝑠/𝑒 are the probability dis-
tributions of the start/end point predicted from the fused or visual
features. We adopt the moment localization loss following [62]:

ℓ𝑙𝑜𝑐 = CE(𝑃𝑠 , 𝑌 𝑠 ) + CE(𝑃𝑒 , 𝑌𝑒 ) (11)

where CE denotes cross-entropy loss; 𝑌 𝑠/𝑒 = {𝑌 𝑠/𝑒
𝑖 }𝑇𝑓𝑖=1 ∈ {0, 1}𝑇𝑓

represents the supervisionwhere𝑌 𝑠/𝑒
𝑖 is set to 1 only at the start/end

point. Combining the two branches, the moment localization loss
of prediction is:

ℓ𝑙𝑜𝑐 = ℓ
𝑓
𝑙𝑜𝑐

+ ℓ𝑣𝑙𝑜𝑐 (12)
The total loss can be expressed as:

ℓ = ℓ𝑙𝑜𝑐 + 𝜆ℓ𝑒 (13)

During inference, we useMaximumLikelihood Estimation (MLE)
to obtain the predicted (𝑦𝑠 , 𝑦𝑒 ) with the constraint 𝑦𝑠 ≤ 𝑦𝑒 from
the audio-visual branch.

3.5 Text-Guided Clues Miner (TGCM)
To capture complicated correlations between audio and visual, we
propose TGCM to model audio-visual interaction guided by text
semantics, which contains two steps: extracting and propagating.
Refer to Figure 2 (b) for details.

First, we use semantic entity-level features to extract shared se-
mantics from audio and visual by attention mechanism with Q𝑒 as
query and X

𝑎/𝑣 as key and value vectors.

Q𝑒 (𝑎/𝑣) = multi-head_attn(𝑞 = Q𝑒 , 𝑘 = X
𝑎/𝑣

, 𝑣 = X
𝑎/𝑣) (14)

wheremulti-head_attn denotes themulti-head attention layerwith
the specified query (𝑞), key (𝑘) and value (𝑣). After extraction, we
add Q𝑒 (𝑎) and Q𝑒 (𝑣) with residual connection to integrate consis-
tent and complementary components:

Q
𝑒
= Q𝑒 (𝑎) + Q𝑒 (𝑣) + Q𝑒 (15)

Then we propagate Q
𝑒 to audio and visual features with X

𝑎/𝑣 as
query and Q

𝑒 as key and value vectors.

X
𝑞 (𝑎/𝑣)

= multi-head_attn(𝑞 = X
𝑎/𝑣

, 𝑘 = Q
𝑒
, 𝑣 = Q

𝑒 ) +X𝑎/𝑣 (16)

Finally, we add X
𝑞 (𝑎) and X

𝑞 (𝑣) to obtain the fused features X𝑓 :

X
𝑓
= X

𝑞 (𝑎) + X
𝑞 (𝑣) (17)

3.6 Curriculum Optimization Strategy
In this section, we evaluate the difficulty of each sample as a mea-
sure of noise intensity in audio modality, as shown in Figure 2 (c).
Considering the outputs of audio-visual and visual-only branches
𝑃𝑠/𝑒 (𝑓 ) and 𝑃𝑠/𝑒 (𝑣) , we expand the boundary-level supervision
𝑌 𝑠/𝑒 to 𝑌 ′𝑠/𝑒 such that 𝑌 ′𝑠/𝑒 = {𝑌 ′𝑠/𝑒

𝑖 }𝑇𝑓𝑖=1 ∈ {0, 1}𝑇𝑓 in which
𝑌
′𝑠/𝑒
𝑖 = 1 where max{𝑦𝑠/𝑒 − 𝑁𝑒 , 0} ≤ 𝑖 ≤ min{𝑦𝑠/𝑒 + 𝑁𝑒 ,𝑇𝑓 }.
𝑁𝑒 is the expansion coefficient. The difficulty grades of each sam-
ple for the audio-visual (𝐺 𝑓 ∈ (0, 1)) and visual-only branches
(𝐺𝑣 ∈ (0, 1)) are as follows:

𝐺 𝑓 /𝑣 =
1
2
(
𝑇𝑓∑
𝑖=1

𝑌 ′𝑠
𝑖 𝑃

𝑠 (𝑓 /𝑣)
𝑖 +

𝑇𝑓∑
𝑖=1

𝑌 ′𝑒
𝑖 𝑃

𝑒 (𝑓 /𝑣)
𝑖 ) (18)

where lower𝐺 𝑓 /𝑣 means it’s a harder sample for the corresponding
branch. Then a relative difficulty grade across these two branches
𝐺 ∈ (0, 1) can be calculated as follows:

𝐺 = 𝜎 (log 𝐺
𝑓

𝐺𝑣 ) (19)

where 𝜎 denotes the sigmoid function.𝐺 reflects the difficulty of a
sample when audio modality is introduced and lower𝐺 means the
introduction of audio makes learning harder compared to learning
from visual individually, which can approximately be a measure
of noise in audio when the model is trained enough. We denote𝐺𝑠

for (𝐺,𝐺 𝑓 ,𝐺𝑣).
To prevent defective gradients caused by noise in audio from

back-propagating in the network, we adjust the loss function under
the guidance of𝐺𝑠 .Wemodify ℓ𝑙𝑜𝑐 in Equation (12) for each sample
as:

ℓ𝑙𝑜𝑐 = I(𝐺𝑠 )ℓ 𝑓𝑙𝑜𝑐 + ℓ𝑣𝑙𝑜𝑐 (20)

where I(·) is an indicator function, i.e. I(𝐺𝑠 ) = 0 when 𝐺 < 𝐺
and 𝐺𝑣 > 𝐺𝑣 ; I(𝐺𝑠 ) = 1 in other situations. 𝐺 and 𝐺𝑣 are thresh-
old hyperparameters. This condition here means that we clear the
gradients from the audio-visual branch when the model performs
well enough on the visual-only branch and much better than that
on the audio-visual branch, which indicates a high likelihood of
significant noise in the audio modality. Clearing gradients on the
audio-visual branch when audio is noisy makes the model memo-
rize valid information in the visual modality better.

4 EXPERIMENTS
4.1 Datasets and Metrics
We conduct our experiments on benchmark datasets for TSG task:
Charades-STA [11] and ActivityNet Captions [19].

Charades-STA. Charades-STA [11] contains short videos about
indoor activities. The videos are not post-edited and accompany
the original soundtrack of the videos. We use 12,408 and 3,720 an-
notations for training and test split, respectively.

ActivityNet Captions. ActivityNet Captions [19] contains user-
generated videos with much longer duration than Charades-STA.
The Videos accompany audio but some of them are post-edited
such as replacing the original soundtrack with background music.
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Table 1: Performance (%) comparison on Charades-STA and ActivityNet Captions dataset. “w/o audio” means the model is
trained without audio modality and “·↑” denotes performance improvement when audio modality is introduced. Values high-
lighted by bold and underline represent the top-2 methods (Variants of “w/o audio” are not within the scope of comparison).

Method Charades-STA ActivityNet Captions
R1@0.3 R1@0.5 R1@0.7 mIoU R1@0.3 R1@0.5 R1@0.7 mIoU

CTRL - 23.63 8.89 - - 29.01 10.34 -
ACRN - 20.26 7.64 - - 31.67 11.25 -
SCDM - 54.44 33.43 - 54.80 36.75 19.86 -
BPNet 65.48 50.75 31.64 46.34 58.98 42.07 24.69 42.11
DEBUG 54.95 37.39 17.69 - 55.91 39.72 - 39.51
GDP 54.54 39.47 18.49 - 56.17 39.27 - 39.80
PfTML-GA 67.53 52.02 33.74 - 51.28 33.04 19.26 37.78
DRN - 53.09 31.75 - - 42.49 22.25 -
Moment-DETR - 55.65 34.17 - - - - -
CPNET - 60.27 38.74 52.00 - 40.56 21.63 40.65
PMI-LOC w/o audio 56.84 41.29 20.11 - 60.16 39.16 18.02 -
PMI-LOC 58.081.24↑ 42.631.34↑ 21.321.21↑ - 61.221.06↑ 40.070.91↑ 18.290.27↑ -
UMT - 48.31 29.25 - - - - -
ADPN w/o audio 70.35 55.32 37.47 51.13 55.72 39.56 25.20 41.55
ADPN 71.991.64↑ 57.692.37↑ 41.103.63↑ 52.861.73↑ 57.161.44↑ 41.401.84↑ 26.311.11↑ 42.310.76↑

We follow the commonly adopted setup [59] for training/test par-
tition. Actually, we use 33,721 and 15,753 annotations in our train-
ing and test sets for the absence of a number of videos on YouTube
since we extract audio features from raw videos.

Metrics. We use “R{n}@{m}” (%) and “mIoU” (%) as our metrics.
“R{n}@{m}” is defined as the percentage of queries having at least
one result whose Intersection-over-Union (IoU) with ground truth
is larger than𝑚 in the top-𝑛 recalled predictions. We use “R1@0.3”,
“R1@0.5” and “R1@0.7” in our experiments. “mIoU” is defined as
average IoU with ground truth when testing.

4.2 Implementation Details
For textual queries, we use 300d GloVe [43] vectors as our ini-
tial word embeddings. For Charades-STA, we apply I3D [5] fea-
tures for visual and PANN [18] features for audio. PANN is a net-
work pretrained on AudioSet [12] dataset. For ActivityNet Cap-
tions, we apply C3D [50] features for visual and VGGish [15] fea-
tures for audio, which are extracted by a VGG [48] network pre-
trained on YouTube-100M [15] dataset. We set the initial learning
rate as 0.00015 and 0.0005 for Charades-STA and ActivityNet Cap-
tions and use AdamW [32] optimizer with linear learning rate de-
cay and gradient clipping of 1.0; 3 semantic entities are extracted;
𝜂 and 𝜆 are fixed on 0.3 and 25; we set 𝑁𝑒 ,𝐺 as 3, 0.3 and𝐺𝑣 as 0.25
and 0.5 for Charades-STA and ActivityNet Captions; we train the
model for 300 epochs with batch size 32 and 64 for Charades-STA
and ActivityNet Captions and adopt early stopping strategy. All
experiments are implemented on a single NVIDIA TITAN X GPU.

4.3 Overall Performance
In Table 1, we evaluate our ADPN in two benchmark datasets and
compare it with: (1) Proposal-based: CTRL [11], ACRN [30], SCDM

[58], BPNet [56]. (2) Proposal-free: DEBUG [33], GDP [7], PfTML-
GA [46], DRN [60], Moment-DETR [22], CPNET [23]. Particularly,
we also compare ourADPNwithUMT [31] and PMI-LOC [8], which
incorporate audio for TSG solutions. Furthermore, we list the re-
sults for PMI-LOC and our ADPN when trained without audio,
where we only train the visual-only branch for ADPN.

On Charades-STA, our ADPN achieves the best performance on
most metrics. Furthermore, it’s worth noting that our ADPN per-
forms even better on harder metrics. We achieve a superior perfor-
mance of 2.36% over CPNET on R1@0.7 although showing compar-
atively lower results on R1@0.5. And we outperform SCDM and
Moment-DETR by 3.25% and 2.04% on R1@0.5, while 7.67% and
6.93% on R1@0.7. More significant improvement on R1@0.7 proves
our ADPN excels in capturing subtle clues for precise moment re-
trieval. On ActivityNet Captions, our method still achieves com-
parable performance and reaches the best on R1@0.7 and mIoU,
which is consistent with its performance on Charades-STA.

Compared with PMI-LOC and UMT, our ADPN shows higher
performance improvement when audio is introduced, especially
on harder metrics R1@0.5 and R1@0.7, where the improvement
of our method is 176.87%, 300.00% for Charades-STA and 202.20%,
411.11% for ActivityNet Captions than that of PMI-LOC, indicating
our ADPN can better leverage audio’s potential. We observe more
significant improvement on samples that are not as hard when
using visual modality individually, leading us to consider audio’s
role more as refining other than rectifying. This implies that the
model primarily attains better performance by refining the predic-
tion from the correlations between audio and visual.Therefore, it’s
more important to pay attention to the audio-visual interaction
than just utilize extra information from audio individually, since
audio often contains sparse and noisy information and serves more
as an auxiliary modality.
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4.4 Ablation Studies

Table 2: Ablation Studies on Charades-STA. “·↑” denotes the
performance improvement of the audio-visual branch com-
pared to the visual-only one within the same model.

Method R1@0.3 R1@0.5 R1@0.7 mIoU
(1) ADPN w/ V-only 70.35 55.32 37.47 51.13
(2) ADPN w/ F-only 72.02 56.34 39.30 52.04
(3) ADPN w/o TG 70.62 57.31 39.41 51.74
(4) ADPN w/o TGCM 70.65 56.26 38.41 51.30
(5) ADPN w/o CL 70.67 56.72 39.62 52.24
(6) ADPN-V (m) 32.39 20.81 10.46 23.78
(7) ADPN-F (m) 34.572.18↑ 22.341.53↑ 11.481.02↑ 25.221.44↑
(8) ADPN-V 70.81 56.72 39.46 51.68
(9) ADPN-F 71.991.18↑ 57.690.97↑ 41.101.64↑ 52.861.18↑

We conduct ablation studies on Charades-STA to evaluate the
crucial factors in our proposed ADPN, as shown in Table 2. Here
we give some implementation details. (1) “w/ V-only”: we only
train the visual-only branch with ℓ𝑙𝑜𝑐 = ℓ𝑣

𝑙𝑜𝑐
and use the prediction

of this branch during inference. (2) “w/ F-only”: we only train the
audio-visual branch with ℓ𝑙𝑜𝑐 = ℓ

𝑓
𝑙𝑜𝑐

and use the prediction of this
branch during inference. (3) “w/o TG”: we remove the guidance of
text in TGCM by replacing the text features Q𝑒 with a randomly
initialized learnable tensor R𝑒 which has the same shape asQ𝑒 . (4)
“w/o TGCM”: we remove TGCM by making X

𝑓
= X

𝑎 + X
𝑣 after

re-sampling X
𝑎 . (5) “w/o CL”: we remove our curriculum learn-

ing strategy of adaptive adjustment on the optimization process,
i.e. I(𝐺𝑠 ) ≡ 1. (6) “-V (m)”: we jointly train visual-only and audio-
visual branches and use the prediction of the visual-only branch
during inference. Particularly, we mask the ground truth part of
the visual input by Gaussian noise with the same mean value and
standard deviation as the corresponding visual features during in-
ference. (7) “-F (m)”: we do the same operation as (6), except we use
the prediction of the audio-visual branch during inference. (8) “-V”:
we jointly train visual-only and audio-visual branches and use the
prediction of the visual-only branch during inference. (9) “-F” (our
standard model): we do the same operation as (8), except we use
the prediction of the audio-visual branch during inference.

Jointly-Training Strategy. Observing (1,2,8,9), the prediction
accuracy of both visual-only and audio-visual branches improves
significantlywhen trained jointly compared towhen they are trained
individually, verifying the validity of our jointly-training strategy.
Taking one step further, (9) achieves 1.35%, 1.80%, and 0.82% per-
formance improvement on R1@0.5, R1@0.7, and mIoU compared
to (2), which is close to 1.02%, 1.83% and 0.91% from (1) to (2). It in-
dicates our jointly-training strategy can alleviate the information
gap between audio and visual and maintain more valid informa-
tion in visual, thus further improving the performance from audio-
visual collaboration, which is as important as just introducing au-
dio modality.

Text-Guided Clues Miner (TGCM). Comparing (3) with (9),
there are dramatic drops of 1.37%, 0.38% and 1.69% on R1@0.3,
R1@0.5 and R1@0.7 when text guidance is removed, verifying its

importance for more precise predictions. As shown in (4), with-
out TGCM, performance degenerates even more on R1@0.5 and
R1@0.7, indicating it’s essential to discover and amplify the shared
crucial locating clues within text, audio and visual modalities.

Curriculum Learning Strategy. Comparing (5) with (9), the
performance increases by 1.32%, 0.97%, 1.48% and 0.62% on four
metrics when our curriculum learning strategy is implemented. To
further prove the effectiveness of our curriculum learning strategy,
we conduct extra experiments on the two threshold hyperparam-
eters 𝐺𝑣 and 𝐺 , as shown in Figure 3. As we can see, the perfor-
mance improvement is stable with suitable hyperparameters. Inter-
estingly, insufficient (when 𝐺𝑣 is high or 𝐺 is small) or excessive
(when𝐺𝑣 is small or𝐺 is high) adjustment in the optimization pro-
cess both weaken the performance. Insufficient adjustment fails to
fully suppress defective gradients from noise, while excessive ad-
justment discards some valid audio information in the early stage
of training when the model is not trained well enough.
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Figure 3: Ablation on different 𝐺𝑣 and 𝐺 of our curriculum
learning strategy. The dashed line in orange denotes the
baseline performance when the curriculum learning strat-
egy is disabled. 𝐺 is 0.3 in (a) and 𝐺𝑣 is 0.25 in (b).

To further verify that our ADPN truly captures locating clues
from audio, we design such an experiment where visual input is
partially masked within the ground truth moment during infer-
ence and we observe the performance gap of the visual-only and
audio-visual branches. As shown in (6)∼(9) of Table 2, the audio-
visual branch still outperforms the visual-only one despite the de-
struction of visual information, indicating our ADPN does cap-
ture complementary clues for localization from audiomodality and
works even without visual information in some scenarios.

The performances consistently drop by a similar amount when
removing any of our crucial parts, suggesting that all our designs
are equally indispensable for effective audio-visual joint learning.
Key units can be individually and flexibly transferred to more com-
mon sceneswhen handlingmultiple diverse and unbalancedmodal-
ities.This is especially suitable for the jointly-training strategy and
TGCM, which are not reliant on specific hyperparameters, signifi-
cantly reducing the barriers to easily applying these techniques.

4.5 Qualitative Analysis
We conduct case studies and obtain some interesting findings, as
shown in Figure 4. Audio-visual interaction helps generate accu-
rate prediction especially when the query words prominently cor-
relate with audio, e.g. “laugh” and “discuss”. We visualize attention
weight distributions on audio/visual features attended by text’s se-
mantic entities (c.f. Equation (14)), and we discover attention over
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Figure 4: Sample results on Charades-STA (left) and ActivityNet Captions (right). Orange, yellow and green rectangular bars
represent the ground truth, prediction of the visual-only branch, and prediction of the audio-visual branch. “T→V/A weights”
show the attention weight distributions on visual/audio features for every semantic entity in TGCM. The darker, the more.

visual and audio are usually consistent (sample (1)) but sometimes
attention on audio provides key complementary clues when visual
collapses (sample (2)). For example, in the sample of “Person laughs
at it”, the model wrongly focuses more on the early part of the
video from visual information, but pays more attention around the
ground truth segment guided by audio and makes correct predic-
tions by combining audio and visual.

To provide more interpretability, we visualize the weight distri-
butions over query words when extracting semantic entity-level
features (c.f. Equation (2)) for sample (2) on ActivityNet Captions,
as shown in Figure 5. We discover that our model can capture fine-
grained correlations between text and video. In the query “The guy
sits and discusses”, the first semantic entity pays the most atten-
tion to the word “discusses” and it guides the model to pay more
attention to the area around the ground truth in audio modality
compared to the other two semantic entities, which corrects the
problem of poor attention in visual to some extend. This indicts
our model does capture some correlations between the meaning
of the word “discuss” and the audio signal of people’s speech.

Merge
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Person takes a phone.

Person takes a phone.

(2) Person laughs at it.

Person laughs at it.

Person laughs at it.

word-level 

weights
(2) The guy sits and discusses.

The guy sits and discusses.
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(1) The guy is carving unique face on the surface of pumpkins.
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word-level 
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The  guy  sits  and  discusses .

The  guy  sits  and  discusses .
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Figure 5: Weight distributions on words for every semantic
entity in sample “v_z3xkE5Ox-2A”-(2).The darker, themore.

5 CONCLUSION
We introduce a novel Adaptive Dual-branch Promoted Network
(ADPN) to solve Audio-enhanced Temporal Sentence Grounding
(ATSG). We design a dual-branch pipeline to jointly train visual-
only and audio-visual branches to fill the information gap between
audio and visual, which outperforms any of the branches when
it’s trained individually. Furthermore, we propose a Text-Guided
Clues Miner (TGCM) to model audio-visual interaction with text
semantics as guidance, which is proven to benefit from the consis-
tency and complementarity between audio and visual. Finally, we
design a curriculum-based optimization strategy to further elimi-
nate noises, where we evaluate the sample difficulty as a measure
of noise intensity in a self-aware fashion and adjust the optimiza-
tion process adaptively. We become the first to handle ATSG with
real audio-awareness and our method achieves competitive perfor-
mance in comparison with the state-of-the-art methods. In the fu-
ture, we would like to build more suitable datasets for ATSG bench-
marks to encourage more insightful research in this area.
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Table 3: Performance (mIoU) gain of the audio-visual branch
compared to the visual-only branch on different kinds of
activities on Charades-STA. We demonstrate the top- and
bottom-20 ones.

Activity Category mIoU Gain (%)
Throwing food somewhere 53.72
Laughing at television 49.77
Fixing a doorknob 38.15
Washing a window 34.97
Throwing a broom somewhere 27.61
Watching something/someone/
themselves in a mirror 22.76
Taking shoes from somewhere 17.27
Holding a picture 16.71
Putting a blanket somewhere 13.97
Tidying some clothes 12.34
Taking a blanket from somewhere 12.02
Holding some food 11.94
Putting a cup/glass/bottle somewhere 11.08
Washing a dish/dishes 10.70
Turning off a light 10.61
Throwing a book somewhere 10.18
Playing with a phone/camera 9.98
Throwing shoes somewhere 9.94
Holding some clothes 9.75
Putting a towel/s somewhere 9.63
… …
Holding a box -4.25
Sitting in a bed -4.30
Sitting on the floor -4.45
Taking a laptop from somewhere -4.63
Sitting on sofa/couch -4.84
Tidying up a table -6.06
Putting a picture somewhere -6.10
Closing a box -6.57
Taking a box from somewhere -7.31
Watching a laptop or
something on a laptop -7.67
Holding a bag -9.54
Washing some clothes -9.95
Taking a bag from somewhere -11.80
Fixing a door -12.72
Taking/consuming some medicine -14.20
Holding a mirror -14.25
Taking a dish/es from somewhere -15.06
Working on paper/notebook -17.31
Holding a dish -18.91
Holding a vacuum -42.96

A SUPPLEMENTARY MATERIAL
Thismaterial presents supplementary experiments on our proposed
method, which consist of ablation studies on the ActivityNet Cap-
tions dataset (A.1), a qualitative analysis from the perspective of

various activity categories (A.2) and a demonstration of more rep-
resentative cases on Charades-STA for consistency and comple-
mentarity (A.3).

A.1 Ablation Studies on ActivityNet Captions
To further verify the general effectiveness of the crucial contribu-
tions in our proposed ADPN, we conduct supplementary ablation
studies on more challenging ActivityNet Captions with the same
settings of Charades-STA, as shown in Table 4.

Following the same analytical approach as before, we can draw
similar conclusions to prove the validity of our jointly-training
strategy, Text-Guided Clues Miner (TGCM) and curriculum opti-
mization strategy. Nevertheless, several noteworthy points should
bementioned, which can inspire further discussion on our findings
and encourage inspiring insights.

Our jointly-training strategy takes better effect for the audio-
visual branch compared to the visual-only branch, especially on
R1@0.5 and R1@0.7, emphasizing its importance for multimodal
learning when handling the information gap of a dominant and a
weak modality, i.e. visual and audio in our settings. Such a strat-
egy can eliminate inter-modal interference without sacrificing uni-
modal learning.

The performance gain still remains on R1@0.5 and R1@0.7 al-
though the assistance of audio modality is weakened from (6)∼(9)
in Table 4. Audio accompanies more noisy information on Activ-
ityNet Captions compared to Charades-STA. This indicates that
audio generally provides complementary information on different
datasets and implies that it’s vital to exploit a noisy modality dur-
ing its interaction with a cleaner one. Interestingly, the overall per-
formance doesn’t drop as dramatically as that on Charades-STA
when the ground truthmoment of visual features is masked during
inference. Since the average duration of videos onActivityNet Cap-
tions is much longer than that on Charades-STA, the ground truth
moment on ActivityNet Captions is shorter in a relative sense. We
speculate more unmasked visual features also provide more valid
information for boundary prediction, thus it may be promising to
explore context reasoning in ATSG for intra- and inter-modal to
better utilize the contextual coherence of multiple modalities.

Table 4: Ablation Studies on ActivityNet Captions. “·↑/↓”
means the performance gain of the audio-visual branch
compared to the visual-only one when training jointly.

Method R1@0.3 R1@0.5 R1@0.7 mIoU
(1) ADPN w/ V-only 55.72 39.56 25.20 41.55
(2) ADPN w/ F-only 57.23 40.67 25.69 42.23
(3) ADPN w/o TG 56.45 41.01 26.01 41.90
(4) ADPN w/o TGCM 56.26 40.15 25.58 41.65
(5) ADPN w/o CL 57.13 40.80 25.34 42.01
(6) ADPN-V (m) 52.80 38.15 24.54 39.26
(7) ADPN-F (m) 52.750.05↓ 39.090.94↑ 25.020.48↑ 39.310.05↑
(8) ADPN-V 56.32 39.66 24.93 41.50
(9) ADPN-F 57.160.84↑ 41.401.74↑ 26.311.38↑ 42.310.81↑
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A.2 Category-Wise Analysis
To further analyze how our method benefits from audio modal-
ity, we conduct activity category-wise analysis on our dual-branch
pipeline to observe the learning differences between the two branches
in a fine-grained manner. In concrete, we use the activity category
annotations on original Charades dataset and observe the average
performance (mIoU) gain of the audio-visual branch compared to
the visual-only one on each activity category. We totally capture
142 types of activities on 3,080 samples of 3,720 test samples. It is
worth noting that such classification doesn’t incorporate compre-
hensive information for the query-video pair and thus it doesn’t
seem rigorous but offers a straightforward and effective approach
for intuitive analysis.

We observe that though the assistance from audio doesn’t work
in all scenarios, the audio-visual branch achieves much better per-
formance on 88 of 142 activities. Especially, we demonstrate ac-
tivity categories that exhibit the top- and bottom-20 performance

gain in Table 3. As we can see, audio modality works well in activ-
ities of “throwing something”, “laughing at something”, “putting
something” etc., which correlates natural audio signals intuitively,
and the model refines its predictions with the assistance of audio
modality. However, audio fails to boost performance in cases of
“sitting”, “taking something”, “holding something” etc., since these
activities have weak acoustic semantics such as “sitting” or the pat-
tern across audio and visual is too ambiguous to learn for themodel
in activities like “taking or holding something”.The learning differ-
ences between the two branches inspire that it’s worth exploring
to design modality selection strategies with confidence awareness
of different modalities.

A.3 More Case Study on Charades-STA
To further show that consistency and complementarity can be deeply
mined by our method, we demonstrate more cases on Charades-
STA. These videos have varied scenarios, durations and moment
temporal locations, which are fairly representative to some extend.

Please visit here for details with raw videos.

https://drive.google.com/drive/folders/1iyYnmQ4PHvEgjK988Ywsjq5hLclTfw9R?usp=drive_link
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