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ABSTRACT

Synthesizing co-speech gestures is challenging because the mapping
from speech to gesticulation is inherently non-deterministic. When
giving talks, people conduct not only gentle and rhythmic motions
but also abrupt and salient gesticulations. Most previous research
efforts, however, ignore this nature of co-speech gestures and syn-
thesize deterministic results, producing over-smoothed movements
with limited expressiveness. To address this issue, we propose a new
co-speech gesture generation approach that produces high-quality
salient gesticulations. Specifically, we build a discrete motion rep-
resentation (DMR) space to bridge the speech-gesture mapping and
the gesture generation stages. The incorporation of DMR enables
random sampling in motion space and avoids the over-smooth prob-
lem in speech-gesture mapping. Based on DMR, we devise a novel
multi-modal co-speech gesture synthesis model with temporal atten-
tion (MCGT). MCGT explicitly models DMR’s categorical distri-
bution conditioned on the speech context, which captures complex
context patterns and produces more salient gesticulations in sync
with the context. In addition, we construct a new benchmark for
evaluating salient motion quality in co-speech gestures, containing a
large-scale co-speech gesture dataset with salient gesticulations. We
also introduce a new metric, referred to as salient motion similar-
ity, to evaluate the salient motion quality. Experiments demonstrate
superior results from our approach over several competing baselines.

Index Terms— Co-speech gesture, Discrete motion representa-
tion, Temporal attention

1. INTRODUCTION

The co-speech gesture is an essential form of non-verbal communi-
cation because it increases the credibility of the speech [1] and helps
listeners to understand the speech. Synthesizing co-speech motions
is vital to various applications like animation, virtual agents, and so-
cial robots. However, it is challenging because the mapping from the
speech to the gesture is inherently non-deterministic. When giving
talks, people conduct not only gentle, rhythmic motions tied with
prosody but also abrupt and salient gesticulations to emphasize facts
or convey particular messages. For example, as shown in Figure 1,
in the first clip, the speaker waved his hand and put it on the desk
rigorously when he emphasized “kill”, while in the second clip, he
just conducted very gentle motions when he talked about “kill”. The
same speaker can perform salient or gentle gestures even when say-
ing the same word. As a result, deterministic approaches tend to
produce the average of multiple plausible gesture motions, leading
to over-smoothed results.

*Corresponding author

Salient Co-speech Gesture

Co-speech Gesture

The generals           propose to                kill Cen Yue.

Does he really           want to                   kill Liu Ji?

Fig. 1. Examples of the salient co-speech gestures (e.g., when saying
“kill” in the top compared to an inconspicuous one in the bottom).

Previous research efforts have shown the rationality of co-
speech gesture synthesis. Traditional co-speech gesture gener-
ation systems synthesize gestures in a rule-based manner [2, 3]
showing limited capacity. Later, researchers propose data-driven
approaches to generate co-speech gestures from audio and text tran-
scriptions [4, 5, 6, 7]. However, most previous research efforts
adopt CNN [4, 8] or RNN [5, 6, 7] in a deterministic way, produc-
ing over-smoothed results that lack expressiveness. Recently, Li et
al. [9] propose synthesizing co-speech gestures with a conditional
variational auto-encoder, but their model tends to stick to a constant
latent code.

To address this problem, we propose synthesizing salient co-
speech gestures to improve gesture expressiveness. The key idea
of our approach is to leverage DMR as the bridge between the ges-
ture generation stage and the speech-gesture mapping stage. We
emphasize the following novelties of our framework: (1) The DMR
space constructed by a vector quantized-variational auto-encoder
(VQ-VAE) [10] on the gesture motion enables random sampling
in motion space and lessens the burden of predicting over-long se-
quences for the synthesis model. (2) In the speech-gesture mapping
stage, we devise a novel multi-modal co-speech gesture synthesis
model with temporal attention (MCGT). MCGT captures complex
patterns of the speech context, producing more salient gesticulations
in sync with the context.

We construct a new benchmark to evaluate the quality of salient
motions produced by different methods. It contains a large-scale co-
speech gesture dataset with salient gesticulations. We also propose a
new metric, salient motion similarity (SMS), to evaluate the quality
of salient motions generated by different methods. We perform ex-
tensive experiments on the TED Gesture [7] dataset and our LecGes-
ture dataset. Objective experiments demonstrate that our approachIC
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generates co-speech gestures with higher SMS than baseline meth-
ods while achieving comparable Fréchet Gesture Distance (FGD).
The subjective evaluation shows that, with the average opinion score
of 17 participants, our approach outperforms baseline methods by
0.34 in expressiveness and 0.37 in speech-gesture synchronization.
To summarize, our contributions are as three-fold:

• We propose to synthesize co-speech gestures using discrete
motion representation (DMR). By learning a DMR space for
gesture motions and modeling the distribution of DMR, our
approach generates more high-quality salient motions.

• We devise a novel multi-modal co-speech gesture synthesis
model with temporal attention (MCGT). MCGT captures
complex patterns of the speech context, producing more
salient gesticulations in sync with the context.

• We construct a new benchmark for evaluating salient mo-
tion quality in co-speech gesture synthesis. We first collect
a large-scale co-speech gesture dataset with more salient ges-
ticulations than existing datasets. Afterward, we introduce
salient motion similarity (SMS) as a new metric to evaluate
salient motion quality in co-speech gestures.

2. METHODOLOGY

This section describes our proposed co-speech gesture generation
framework, as shown in Figure 2. We first construct a discrete mo-
tion representation (DMR) space with a VQ-VAE [10]. Afterward,
we devise a novel multi-modal co-speech gesture synthesis model
with temporal attention (MCGT) based on the DMR space. MCGT
predicts the distribution of discrete gesture motion representations
conditioned on the speech text, audio, and seed motion.

2.1. Discrete Representation Learning

van den Oord et al. [10] first propose to learn discrete representations
without supervision. They incorporate ideas from vector quantiza-
tion to create the Vector Quantized Variational Auto-Encoder (VQ-
VAE). The VQ-VAE consists of an encoder network, a decoder net-
work, and a latent embedding space. The encoder first encodes the
input data. Afterward, the input to the decoder is calculated from
the output of the encoder by a nearest-neighbor lookup in the latent
embedding space. The discrete latent space learned by the VQ-VAE
makes effective representations for the data space. Such discrete rep-
resentations are a more natural fit for many modalities and complex
reasoning, as suggested by van den Oord et al. [10].

2.2. DMR Auto-Encoder

To address the non-deterministic mapping issue, we learn a dis-
crete motion representation (DMR) space for the gesture motion,
which enables sampling in the motion space and helps to avoid
over-smoothed results.

Specifically, we train a VQ-VAE [10] on the speech gesture
motion clips. At training time, given a T -frame gesture sequence
X ∈ RM×T , where M is the dimension of a gesture frame, we
first encode it and perform the nearest neighbor lookup operation in
the DMR space. The encoder is a ResNet [11] with a downsam-
pling factor of 8. To achieve high expressiveness of the DMR space,
we adopt multi-head categorical latent space following Richard et
al. [12]. Specifically, we define our DMR space as E ∈ RH×D×K ,
where H is the number of heads, D is the codebook size of each
head, and K is the dimensionality of the latent vector. The nearest

neighbor lookup is performed on the codebook of each head, respec-
tively. The motion latent of X is denoted as:

C = quantize(encode(X)) ∈ RH×K×T
8 , (1)

where quantize represents the nearest neighbor lookup over each
head. Afterward, the decoder reconstructs X̂ ∈ RM×T from C.
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Fig. 2. The pipeline of our framework.

2.3. Speech-Gesture Mapping

Having obtained the DMR space for gesture motions, we devise a
multi-modal co-speech gesture synthesis model with temporal atten-
tion (MCGT), which predicts the conditional distribution of DMR
from the speech text, audio, and seed motion. Our model combines
the multi-head attention mechanism [13] with convolutional feed-
forward layers. This design enables it to capture complex patterns
and long-range temporal relations of the speech context, producing
more salient gesticulations in sync with the speech context.

Specifically, our model first encodes representations for each
modality via multi-modal encoder networks. Then a cross-modal
fusion network predicts co-speech gesture representations from the
multi-modal representations.

Seed Gesture Encoder. The seed gesture encoder encodes seed
gesture motion representations into latent representations to encour-
age consistent transition between seed gesture motions and the gen-
erated gestures. Given the DMR sequence of the seed gesture mo-

tion Cseed ∈ RH×K×Tseed
8 , the encoder first projects each frame

of the DMR sequence into a Dmodel-dimensional space via a lin-
ear layer, where Dmodel is a hyper-parameter. We then inject si-
nusoidal positional encoding [13] into the projected frames to get

H0
seed ∈ RDmodel×

Tseed
8 . Feeding H0

seed through l encoder blocks,
we get the seed gesture representation Hl

seed.
Audio Encoder. The acoustic feature sequence A ∈ RN×Tgen

is the log-power Mel-spectrogram extracted from the speech audio.
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We carefully set the window length and hop length so that the acous-
tic feature A and the target gesture motion latent sequence Xgen

contain the same number of frames. Then we conduct the same
projection and positional encoding injection on A to get H0

audio.
Finally, after applying l encoder blocks, we obtain the audio repre-
sentation, denoted as Hl

audio ∈ RDmodel×Tgen .
Text Encoder. For the semantic features, we first apply a pre-

trained BERT [14] model released by Cui et al. [15] to get a feature
vector for each word in the sentence and align them with the audio.
After the alignment operation, the semantic feature sequence S will
contain the same number of frames as A. Then we conduct the same
projection and positional encoding injection on A to get H0

text. Af-
ter applying l encoder blocks, the resulted representation is denoted
as Hl

text ∈ RDmodel×Tgen .
Cross-Modal Fusion Network. Having obtained the encoded

multi-modal context representations Hl
seed, Hl

audio and Hl
text, we

predict the target DMR sequence Cgen with a cross-modal fusion
network. The cross-modal fusion network is mainly made up of
several decoder blocks. Each decoder block consists of a convolu-
tional layer, a multi-head self-attention layer, and a multi-head cross-
attention layer. We treat the sum of Hl

audio and Hl
text as the input

sequence of the decoder block, while taking Hl
seed as the query of

the cross-attention layer in the decoder block. In this way, the cross-
modal fusion network can generate co-speech gestures closely re-
lated to the acoustic and semantic representations while maintaining
a smooth and natural transition from the seed gesture sequence to the
target gesture sequence.

Finally, the output of the cross-modal fusion network is trans-
formed into categorical distribution probabilities using an MLP
and a softmax function over each motion latent head, Ĉgen ∈
RH×D×Tgen

8 . During training, we minimize the cross-entropy loss
between Ĉgen and the motion latent given by the latent encoder:

Lcross = −
H∑

h=1

Tgen
8∑

t=1

log(Ĉh,k,t
gen ), (2)

where k = argminj(||Eh,j − encode(Xgen)
h,t||2). During infer-

ence, we first sample DMR from the conditional categorical distri-
butions given by MCGT. Afterward, we decode the gesture motions
from the sampled DMR with the DMR decoder.

3. EXPERIMENT

3.1. Benchmark Building

Although previous works [4, 16, 7] have provided a few co-speech
gesture datasets, there are limitations, such as lack of text transcrip-
tions [4] or no sufficient salient gesture motions [7]. On the other
hand, there is no currently widely-accepted metric for evaluating the
salience of gestures. Observing these limitations, we build a new
benchmark to evaluate the quality of salient motions produced by
different methods.

Dataset. Our LecGesture dataset contains sufficient salient ges-
ture motions. We construct our dataset from a famous Chinese lec-
ture program1 with the help of pose estimators [17, 18, 19] and a
forced aligner [20]. In total, the LecGesture dataset contains 4,240
clips of lectures with 5 speakers for 24 hours.

Having obtained the dataset, we visualize the end-effector ve-
locity and acceleration distribution in the LecGesture dataset and the

1https://tv.cctv.com/lm/bjjt/

Fig. 3. Results of dataset observation.
TED Gesture [7] dataset. As shown in Figure 3, in the TED Gesture
dataset, the majority of motion velocity samples are located in the
low-speed (0.0 ∼ 0.03) interval, while in our dataset, samples are
mainly located in the medium-speed (0.03 ∼ 0.15) interval. As the
velocity and acceleration of most salient gesture motions are faster
than those of gentle gesture motions, we can conclude from the dis-
tribution that the Speec2Gesture dataset mainly consists of gentle
gesture motions, while our LecGesture dataset contains more salient
gesticulations. In this work, we also conduct experiments on the
TED Gesture [7] dataset for fair comparison.

Metrics. Although the Fréchet Gesture Distance (FGD) re-
flects the overall quality of generated co-speech gestures, it does
not measure the pairwise similarity between each generated clip
and the ground-truth clip. Previous works adopt different types of
metrics to measure the pairwise similarity, such as mean velocity
difference (MVD) [21] and mean absolute error of joint coordinates
(MAEJ) [7]. However, because the co-speech gesture is highly non-
deterministic and the speaker conducts gentle gesticulations most of
the time, directly comparing the velocity or joint location frame by
frame does not reflect the similarity. For example, as we show in our
experimental results, even a static mean-pose baseline outperforms
the SOTA in terms of MVD. Observing the limitations of existing
metrics, we propose a new metric, salient motion similarity (SMS),
to measure the quality of salient motions. Specifically, given a ges-
ture sequence X ∈ RM×Tgen , we denote the j-th joint’s velocity in
the k-th frame as Vj,k ∈ R3. The SMS between the ground-truth
clip X and the generated clip Xgen is defined as:

SMS(X,Xgen) =
1

||J ||
∑
j∈J

maxm∈[k−w,k+w](
Vj,k ·Vj,m

gen

||Vj,k||22
),

(3)
where k = argmaxp(||Vj,p||2), w = 8, Vgen represents the veloc-
ity of generated clips, and J represents the set of end-effectors. We
measure the velocity similarity in the time window [t−w, t+w] be-
cause we do not expect motions exactly the same as the ground-truth.
We also use FGD to evaluate the overall gesture quality.

We train our model on the proposed benchmark. We set
Dmodel = 128, l = 7, Tseed = 64 and Tgen = 128. We use
the Adam optimizer [22] with β1 = 0.9, β2 = 0.98, ε = 10−9.
We train the DMR auto-encoder for 950k steps and the MCGT for
420k steps with a batch size of 64 and a learning rate of 10−4 until
convergence. We select 3816 clips from the LecGesture dataset for
training and hold out 424 for testing.

3.2. Quantitative Results

Table 1 shows the comparison results between the proposed MCGT
and the baselines. To measure the overall gesture quality, we first
calculate the FGD between the generated gesture sequences and the
ground-truth sequences. FGD measures how close the distribution
of generated clips is to the real ones. The experiment results demon-
strate that our approach achieves comparable FGD with Trimodal [7]
and outperforms the other baselines. The FGD values confirm that
our approach generates overall realistic gesture motions.
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Table 1. Objective comparison of different methods and the ablated
model. The Mean Pose baseline outputs the mean pose of the train-
ing set regardless of the input.

Methods LecGesture dataset TED Dataset
FGD↓ SMS↑ MVD↓ FGD↓ SMS↑

Trimodal [7] 0.042 0.258 0.101 3.729 0.267
S2G [4] 0.524 0.218 0.058 19.254 0.224

A2B [23] 0.580 0.382 0.074 22.861 0.373
Mean Pose 4.214 0 0.080 182.712 0

Ours 0.061 0.403 0.124 3.942 0.391
Ours w/o DMR 0.011 0.303 0.108 3.451 0.315

Table 2. The mean opinion scores (MOS) of different methods, with
95% confidence interval.

Methods Expressiveness Content Matching
Ground-Truth 4.35± 0.32 4.32± 0.52

S2G [4] 2.05± 0.46 2.01± 0.60
A2B [23] 2.66± 0.48 2.86± 0.47

Trimodal [7] 3.21± 0.28 3.25± 0.30
Ours 3.55± 0.31 3.62± 0.29

Ours w/o DMR 3.38± 0.35 3.46± 0.32

We then measure the pairwise similarity between each gen-
erated sequence and the ground truth. As the co-speech gesture
is highly non-deterministic, we do not expect models to generate
the same motions as the ground truth. Instead, we measure the
velocity differences between different methods. We first calculate
the mean velocity difference (MVD), which measures the velocity
difference frame by frame. We argue that this frame-by-frame dif-
ference makes MVD unsuitable for evaluating co-speech gestures.
Because the speaker conducts gentle gesticulations most of the time,
predicting a static mean pose could achieve lower MVD. As shown
in Table 1, even the Mean Pose baseline achieves lower MVD than
Trimodal [7]. Audio2Body [23] and Speech2Gesture [4] also reach
lower MVD even though they exhibit poor FGD. Observing this lim-
itation, we further calculate salient motion similarity (SMS) for our
approach and the baseline methods. Compared with Trimodal [7]
and Speech2Gesture [4], our approach generates co-speech gesture
motions with higher SMS. Although motions generated by Au-
dio2Body [23] also exhibit high SMS, they show noisy dynamics
and poor temporal continuity, as indicated by the high FGD value.

3.3. Qualitative Results

Figure 4 shows qualitative results generated from one sample in the
LecGesture dataset. Speech2Gesture [4] tends to generate only slow
and gentle gesture motions. Motions generated by Audio2Body [23]
exhibit noisy dynamics but generates no salient motions because it is
difficult to directly translate audio to co-speech gesture motions with
a single-layer RNN. Trimodal [7] shows high overall gesture qual-
ity but suffers from the over-smooth problem because it assumes a
deterministic mapping from the speech to the gesture. Meanwhile,
equipped with the discrete motion representation, our approach gen-
erates more high-quality salient gesticulations

3.4. Subjective Evaluation

To compare the perceptual quality of the co-speech gesture generated
by different methods, we conduct a user study. We ask participants
to rate the mean opinion score (MOS) for the generated gestures
in 1∼5 (higher scores denote better quality). Specifically, for each

Ours

Trimodal

Speech2Gesture

Audio2Body

They race against the enemies
x

Fig. 4. Co-speech gestures generated by different methods.
video, the participants rate (1) the expressiveness of the co-speech
gestures and (2) the content matching degree between the co-speech
gestures and the speech content.

We recruited 17 participants. Each participant rated 20 videos.
The results of the user study are shown in Table 2. Our approach
achieves higher MOS both in expressiveness and content matching,
outperforming Trimodal [7] by 0.34 in terms of expressiveness and
0.37 in terms of content matching. The results of the user study con-
firm that compared with baselines, our model generates co-speech
gestures with better perceptual quality.

3.5. Ablation Study

In order to understand the function of the DMR space in our model,
we conduct an ablation study. Specifically, we remove the DMR
space from our approach and train the MCGT to regress the joint co-
ordinates in co-speech gesture motions directly. As shown in Table 1
and Table 2, although removing DMR space leads to lower FGD, it
decreases SMS and perceptual quality. We also notice that the ab-
lated model outperforms Trimodal [7] in terms of both FGD and
SMS, confirming that the convolutional architecture with temporal
attention improves both overall gesture quality and gesture salience.

4. CONCLUSION

This paper proposes a novel co-speech gesture generation approach
to improve the gesture salience in co-speech gesture synthesis. Our
approach adopts the discrete motion representation to bridge the
speech-gesture mapping stage and the gesture generation stage. To
better evaluate the effectiveness of our approach, we construct a new
benchmark for evaluating salient motion quality in co-speech ges-
ture synthesis. Experiments demonstrate that our approach produces
high-quality salient gesticulations while keeping the overall gesture
motion realistic.

5. ACKNOWLEDGEMENTS

This work is supported by the National Key R&D Program of China
under Grant No.2021QY1500, and the state key program of the Na-
tional Natural Science Foundation of China (NSFC) (No.61831022).

Authorized licensed use limited to: Tsinghua University. Downloaded on August 10,2023 at 01:28:18 UTC from IEEE Xplore.  Restrictions apply. 



6. REFERENCES

[1] Robert M Krauss, Yihsiu Chen, and Rebecca F Gotfexnum,
“Lexical gestures and lexical access: A process model,” Lan-
guage and gesture, vol. 2, pp. 261, 2000.

[2] Justine Cassell, Hannes Högni Vilhjálmsson, and Timothy W.
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