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ABSTRACT

This work aims to provide a deep-learning solution for the motion
interpolation task. Previous studies solve it with geometric weight
functions. Some other works propose neural networks for different
problem settings with consecutive pose sequences as input. How-
ever, motion interpolation is a more complex problem that takes iso-
lated poses (e.g., only one start pose and one end pose) as input.
When applied to motion interpolation, these deep learning methods
have limited performance since they do not leverage the flexible de-
pendencies between interpolation frames as the original geometric
formulas do. To realize this interpolation characteristic, we propose
a novel framework, referred to as Shuffled AutoRegression, which
expands the autoregression to generate in arbitrary (shuffled) order
and models any inter-frame dependencies as a directed acyclic graph.
We further propose an approach to constructing a particular kind of
dependency graph, with three stages assembled into an end-to-end
spatial-temporal motion Transformer. Experimental results on one
of the current largest datasets show that our model generates vivid
and coherent motions from only one start frame to one end frame
and outperforms competing methods by a large margin. The pro-
posed model is also extensible to multiple keyframes’ motion inter-
polation tasks and other areas’ interpolation.

Index Terms— neural networks, motion interpolation, trans-
former, human motion, animation

1. INTRODUCTION

When creating character animations, animators use human mo-
tion interpolation methods to fill blank frames between hand-made
keyframes. The general methods provided by animation software,
such as spline curves [1], fail to depict vivid human motions. To
achieve better performance, previous researchers attempt to improve
the interpolation kernels of the weight functions from two perspec-
tives. They either use general interpolation functions in higher order
space, like QLERP [2], SpFus [3], or establish a human joint model
and use statistical methods to study it [4]. However, in many cases,
these mathematical methods still need manually editing of curve
parameters or more keyframes to obtain better visual quality.

Recently several works [5, 6, 7, 8] have contributed to similar
tasks. Including motion interpolation, these tasks are collectively
referred to as motion completion. The difference between their in-
puts is shown in Fig. 1. For the in-betweening task, [6] propose
time-to-arrival embedding and scheduled target noise, forming a ro-
bust RNN-based autoregressive model. For the infilling task, [7, 8]
view human motion infilling as spatial-temporal image inpainting
and apply autoencoders to reconstruct motions. For both tasks and
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Fig. 1. The differences between input proportions (the unmasked
proportions) of motion completion scenarios (motion in-betweening,
infilling, blending, interpolation). Please note that the example mo-
tion consists of 32 poses, and one pose drawn in this figure stands
for two poses in the motion sequence.

the blending task, [5] use a Transformer [9, 10] encoder to modify
the linear interpolation, which is a more versatile method.

Though previous deep learning methods have achieved promis-
ing results on these similar tasks, there are still some challenges to
be solved. On the one hand, the above methods show poor perfor-
mance when applied to motion interpolation, which is a more com-
plex problem with the smallest input size. Due to the substantial
reduction of input information, autoregressive models suffer from
severe error accumulation, which hinders them from finishing the
transition to the end pose. In contrast, non-autoregressive models
tend to predict over-smoothed motions. On the other hand, these
methods don’t leverage some essence of the interpolation task. The
weight function method [1, 2, 3, 4] shows that it is reasonable to gen-
erate an interpolation frame with any frame as the condition. Given
the linear interpolation, the impact of each keyframe on the resulting
frame depends only on their temporal distance. So it is acceptable
that the keyframe is in the past or the future, away from or near the
resulting frame. This indicates that the frames have flexible depen-
dencies in an interpolation task.

To address the problems above, we propose a Shuffled AutoRe-
gression (SAR) method. It is an extension of the original autoregres-
sive (AR) framework. The AR framework generates future frames
from past frames in chronological order. In contrast, as shown in
Fig. 2, the SAR framework generates frames in a custom order, and
the dependencies between frames are also freely selected, which en-
ables it to catch the flexible inter-frame dependencies. In fact, the
SAR framework can express any dependency as long as these depen-
dencies form a directed acyclic graph. For the first problem, SAR al-IC
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Fig. 2. From left to right are the inference procedure of the SAR, the SAR framework, and the SAR model. The Legend is in the lower
middle. An empty frame means that we haven’t generated this frame yet. When the current iteration is generating it, it becomes a target
frame. After its generation, it becomes valid. If the ongoing iteration depends on a valid frame, then the frame becomes active. Firstly,
we design a dependency graph whose topology can be explained as the pipeline of the inference procedure. (kn in the first stage means the
n-th keyframe.) Secondly, we construct the SAR model, deriving the FDAM from the graph. Thirdly, the model works in iterations of the
inference procedure. The middle and right parts of the figure shows the iteration when predicting frame t conditioned on frame 0, k2, i, j,
T + 1. We can find the target frame for every iteration by querying the dependency graph. Then we put it back at the input for the next
iteration.

leviates the error accumulation of autoregressive methods and takes
advantage of parallel generation. The error accumulates along the
dependency graph, so we can manipulate its topology to constrain it.

In particular, we design a DAG topology representing a motion
interpolation pipeline. The proposed pipeline contains three stages:
1) keyframe interpolation, 2) frame-by-frame generation, and 3) mo-
tion smoothing. The three stages follow under a divide-and-conquer
strategy to constraint error accumulation. We incorporate the three
stages in an end-to-end Transformer [9] architecture, the attention
mechanism of which describes the direct relationships between any
two frames. We prove that the architecture is fit to carry out the SAR
by controlling the attention mask. Specifically, we propose a Flexi-
ble Dependency Attention Mask (FDAM) module, which enables a
Transformer Decoder (GPT-like) to carry out SAR.

To evaluate the effectiveness of our model, we evaluate our
model for motion interpolation between two frames on the massive
AMASS dataset [11]. To enforce our model’s generality, we em-
brace motions of various amplitudes and design different sliding
windows for different framerates. Experiments show the effective-
ness of our proposed model compared with state-of-the-art deep-
learning methods. Although the interpolation between two frames is
discussed later in this paper, the flexibility of the SAR makes it easy
to extend the model to multiple frames’ interpolation.

The contributions of the paper can be summarized as follows:
• We propose a deep learning method to solve motion inter-

polation, a more complex setting than other works. And it
outperforms state-of-the-art methods for motion completion.

• We propose to address the motion interpolation problem
with Shuffled AutoRegression architecture and an end-to-end
model realizing the SAR. The approach can be extended to
interpolation problems in other fields.

• We propose a Flexible Dependency Attention Mask (FDAM)
module, which enables a Transformer to carry out the SAR.

2. PROBLEM FORMULATION

Our human body’s skeletal structure consists of rigid bone segments
linked by J joints, where each joint consists of a relative rotation an-
gle of 3 rotational Degrees of Freedom (DoF). We shall represent a

pose by a tensor p ∈ RJ×3. Given the pose at the start moment p(0)

and the end moment p(T+1), motion interpolation is to generate a
sequence of poses P = [p(1),p(2), . . . ,p(T )] ∈ RT×J×3. The gen-
erated motion should accord with human exercise habits and directly
connect the given frames. As this problem is non-deterministic, in
practice, the results are often optimized to fit into the existing mo-
tion data, indicated by the distance of each generated pose from the
ground truth. As the bone length of our body model is simplified and
inherently encoded, here we optimize the L2 distance of joint angles
between generation and the ground truth to a minimum.

3. PROPOSED METHOD

Aiming to reduce the error accumulation of autoregressive models,
we propose Shuffled AutoRegression (SAR), whose dependencies
form a Directed Acyclic Graph (DAG). (If frame i conditions on the
prediction of frame j, then there exists dependency from frame i to
frame j.) The error accumulates along the edges of the dependency
graph. Based on this observation, we design a specific DAG for
motion interpolation in which error accumulates much slower than
the original order, as shown in Fig. 2. The designed order consists of
three stages, which form a pipeline for the task. Note that the SAR
can handle any kind of DAG. Here we only state a particular kind of
DAG that converges quickly and works well in the attempt. And we
compare it with a DAG representing binary search in subsection 4.4.

To carry out the SAR, we leverage the Transformer [9] decoder
used in GPT-2 [12] as the backbone of the regressor. Here, we design
a Flexible Dependency Attention Mask (FDAM) module, which en-
ables the architecture to fit SAR. We further prove that FDAM is a
shuffled and transposed adjacent matrix of the dependency graph.

3.1. Shuffled AutoRegression

3.1.1. Prediction Order and Dependency Graph

Before introducing the concept of SAR, we first elaborate on why
the error accumulates so fast in the original autoregressive order. To
generate a sequence X = [x0,x1,x2, . . . ,xT−1] (xinp as default
input), the autoregressive prediction order is a sequential order:

OAR = [0, 1, 2, ..., T − 1], (1)
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xi = f(xinp,x0,x1,x2, . . . ,xi−1; Θ), (2)
where f is the function of an autoregressive model with parameters
Θ. However, in motion interpolation, most of the input frames to the
model are biased predictions, while only two of them are the ground
truth. This leads to an unacceptable error accumulation speed.

We propose Shuffled AutoRegression (SAR) to alleviate the
problem. We only choose those elements that are highly related
and have fewer errors as references for the following generation
to reduce the proportion of deviation. And to make those highly
correlated elements happen to be the ones with the minor error,
SAR breaks down the left-to-right order along with the half-full
dependencies. Our formulas are shown below:

OSAR = [t0, t1, t2, . . . , tT−1], (3)

xti = f(xinp, choice(xt0 ,xt1 ,xt2 , . . . ,xti−1);Θ
′), (4)

where OSAR represents the prediction order of SAR, in which we
can decide each ti freely. And choice function chooses partial input
by masking the rest. If nodes of a directed graph represent elements
in the sequence and edges represent dependencies in SAR, then they
form a dependency graph. It is easy to prove that the dependency
graph is a DAG, and the prediction order is one of its topological
sorting arrays. Note that a DAG may have different sorting arrays.
They are all valid prediction orders because some nodes share the
same dependencies and can be generated simultaneously.

Error accumulates through edges of the dependency graph, so
we can constraint error accumulation by deliberately designing the
OSAR and the choice function, which decides the graph topology.

3.1.2. Pipeline

We instantiate a dependency graph for motion interpolation, repre-
senting a pipeline of 3 stages: keyframe interpolation, frame-by-
frame generation, and smoothing.
Keyframe Interpolation Frames generated earlier generally have a
minor error, making them the best reference for future generations.
We select several keyframes, which equally split the entire sequence.
Then generating the frames between adjacent keyframes is a smaller-
size motion interpolation problem. It is a divide-and-conquer strat-
egy, which can be done recursively by selecting multiple levels of
keyframes. For simplicity, we only select one level in the paper.
Frame-by-Frame Generation After sub-problems become simple
enough, we solve them by a left-to-right autoregression called frame-
by-frame generation. This stage ensures the continuity of the sub-
problem because of adjacent dependencies. Keyframe interpolation
and frame-by-frame generation can dilute error accumulation in two
directions. First, error accumulates through levels of keyframes.
Then, it flows through intervals of minimal sub-problems.
Smoothing We apply a global smoothing process by re-generating
the sequence depending on all the previous predictions, which is a
parallel generation. This stage can also be integrated into the depen-
dency graph by duplicating the previous nodes.

3.2. Backbone of the Regressor

As shown in Fig. 2, the regressor consists of (1) Spatial Pose En-
coder, (2) Temporal Decoder, (3) Spatial Pose Decoder, and it work
under the guidance of the dependency graph that controls the FDAM.

3.2.1. Spatial Pose Encoder and Motion Embedding

The model receives the motion sequence Pinp ∈ RN×J×3 as input.
To handle 3D motion sequence, we feed each pose p

(i)
inp ∈ RJ×3

into a Spatial Transformer [9] Encoder, which conducts attention
between every two joints, receiving an embedding matrix Einp =

[e
(0)
inp, e

(1)
inp, e

(2)
inp, . . . , e

(N−1)
inp ]T, where each embedding e

(i)
inp is a J ·

D dimensional vector. Then we add sinusoidal position embedding
and feed it to the Temporal Decoder.

3.2.2. Temporal Decoder

The Temporal Decoder contains several blocks of GPT-2 [12] with
the FDAM Multi-Head Attention. The Temporal Decoder takes Einp

as input and outputs a sequence of embedding Egen of the same size.
In the FDAM Multi-Head Attention layer, the FDAM inside it

can control which input frames are used or masked for generating
each e

(i)
gen, which realizes the choice function of Equation (4).

Following is the algorithm for generating FDAM. For a specific
dependency graph, find one of its topological sort arrays OSAR. For
every element Oi in the OSAR, find all nodes from which have edges
(xj , Oi) in the graph. Then for each xj , set FDAM[Oi−1, xj ] = 1
(Let O0 = 0). So the FDAM is the transposed adjacent matrix of the
dependency graph which is shuffled by a function:

FDAMOi−1 = AdjacentMatrixT
Oi

.

3.2.3. Spatial Pose Decoder and Shuffled Output

We use an MLP as the Spatial Pose Decoder to decode the embed-
ding Egen to an output pose sequence Pgen of the same size as Pinp.
Because of the SAR, the output is in shuffled order as described in
subsubsection 3.2.2. For every generation, we receive one valid ele-
ment p(Oi) from the active path p

(Oi−1)
gen . Then we put it back and

run for another iteration.

3.3. Training and Inference

The training method contains two steps. In the first step, we apply
a teacher-forcing strategy that facilitates convergence. We optimize
MSE loss between the result and ground truth. In the second step, the
model’s output is entirely generated from the start and end frame, im-
proving test-time performance. We block the gradients of the model
and use the trained model to operate the first two stages. Then we
feed the trajectory to the network, generating the whole sequence in
parallel for the second time. Then We optimize MSE loss between
the generated frames and the ground truth. The inference method
works in the same way as the second training step.

4. EXPRIMENT

4.1. Dataset

We adopt SMPL+H [13, 14] skeleton and conduct experiments on a
dataset constructed from the AMASS dataset [11]. The raw data con-
tains various actions and motion sequences at different frame rates.
We follow previous work [6] to cut a long motion sequence into
small pieces by sliding a window. We set the sequence length to 31.
However, to enforce our model’s generality, we embrace motions
of various amplitudes and design different sliding windows for dif-
ferent framerates. For a high framerate, we set the window lengths
assigned to both 31 and 62 frames, then downsample the latter one.
Totally, we have a 166,696 sliced sequence. The constructed dataset
is split into training, validation, and test splits consisting of roughly
70%, 10%, and 20% of the samples, respectively.
Implementation Details For pose embedding, we use a Transformer
encoder which consists of 4 blocks with embedding dimensions of
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Table 1. Quantitative results against several baseline methods and
ablation study results. For all metrics, the lower, the better. The
Neighbor L2 Distance is shown as the value minus the ground truth
value (full model value) for quatitative (ablation) results.

Model MPJAE MPJPE Neigh Dist NPSS
QN [17] 0.3922 0.6759 105.9001 2.868
BERT [5] 0.0153 0.0466 -1.9475 0.095
CAE [8] 0.0247 0.0852 -1.9628 0.121
SLERP [18] 0.0103 0.0406 -5.2662 0.093
Ours 0.0102 0.0365 -1.0368 0.089
Full Model 0.0102 0.0365 0 0.089
Original AR 0.1847 0.3461 89.395 6.594
Binary Search 0.0152 0.0584 1.3489 0.107
w/o smoothing 0.0121 0.0387 2.0001 0.096

size 1248 (24 for each joint) and 12 heads attention layers. For Tem-
poral Decoder, we use 6 blocks with 8 heads of attention. For pre-
diction order, we select keyframes set [1, 9, 19, 29].

4.2. Evaluate Metrics

Reconstruction Loss We leverage the standard metrics Mean Per
Joint Angle Error (MPJAE) and Mean Per Joint Position Error
(MPJPE) to evaluate motion interpolation.
Neighbour L2 Distance [15] An indicator of both naturalness and
smoothness, which can be viewed as the speed of motion. The closer
the measured value is to the ground truth value, the better.
NPSS We adopt Normalized Power Spectrum Similarity (NPSS)
[16], which is proved to be highly correlated to the human assess-
ment of motion quality.

4.3. Results

We compare our model with four methods, including neural net-
works and mathematical functions. For neural networks, We choose
Quaternet (QN) proposed by [17], a unified BERT-like model
(BERT) proposed by [5] and a convolutional autoencoder (CAE)
proposed by [8] as baselines. The selection covers the main types
of motion modeling solutions and contains each type’s state-of-
the-art methods. Additionally, we use spherical linear interpolation
(SLERP) as our baseline of mathematical methods.
Quantitative Results The performance of different methods tested
on the test dataset is summarized in Table 1.

Quaternet[17], transferred from the motion prediction task, fails
to work since it is autoregressive. Our model outperforms other
deep learning models by a large margin on reconstruction losses and
NPSS. And our model is the closest to the ground truth value when
evaluating the Neighbor L2 Distance. The other models have a lower
value than the ground truth value, which indicates that their results
are more monotonous. SLERP predicts an average trajectory of the
motion space, resulting in advantages in metrics values. Therefore,
its good metric values can not reflect its visual quality.
Qualitative Results We randomly select 20 samples from the test
dataset. We demonstrate the most representative sample where the
motion is taking a step forward in Fig. 3.

The SLERP interpolation is weaker in naturalness than other
models. And the uniform rotation of the knees in SLERP’s result
leads to penetration with the ground. The autoencoder model [8]
generates a trembling upper body because it is a local-oriented model
based on CNN. The jitter can be seen more clearly in the video. Our

Fig. 3. Qualitative Comparison. The expected motion is taking a
step forward. GT stands for the ground truth. Dotted rectangles in
the figure mark the defects of methods.

model and the BERT-like model [5] have better results in motion
interpolation since both can generate coherent actions. The over-
smoothed problem of the BERT-like model from its linear interpo-
lation input has not been fully solved. It can be seen in the figure
that the actor of the BERT-like model seems to be throwing his legs
powerlessly. Compared with the Bert-like model, our results show
the strength of the human body and are closer to the ground truth.

4.4. Ablation Study

We conduct an ablation study on AMASS dataset to test each
pipeline function, presented in Table 1. The results show that each
component of our model contributes to the performance.

Firstly we train the model with the original autoregression to
evaluate the importance of the SAR. The model fails to work as ex-
pected. As the frame-by-frame generation progresses, the motion
speed gradually decreases due to error accumulation. Finally, the
model tends to predict no movement visually and fails to connect the
end pose. Secondly, the SAR with a dependency graph that does not
contain the frame-by-frame generation is tested. We follow the order
of binary search, which recursively generates the middle frame of an
interval. The output becomes incoherent because of the scarcity of
local dependencies. Thirdly, we train the model without the smooth-
ing step. The growth of Neighbour L2 Distance value shows that the
smoothing step significantly improves smoothness.

5. CONCLUSIONS

In this work, we propose the novel Shuffled AutoRegression (SAR)
for motion interpolation. Based on the observation that the depen-
dency graph of SAR is a directed acyclic graph, we further propose
an idea for constructing a specific kind of dependency graph. The
topology of the graph represents a pipeline containing three stages:
(1) keyframes interpolation, (2) frame-by-frame generation, and (3)
smoothing. Additionally, we devise the Flexible Dependency At-
tention Mask (FDAM) and plug this module into our backbone re-
gressor. Our framework alleviates the error accumulation problem
and generates consecutive and natural motions. Experiments on the
AMASS dataset show that our model outperforms other methods
for similar tasks. Our framework can also be extended to multiple
keyframes’ interpolation tasks and interpolation in other fields.
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