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ABSTRACT
People talk with diversified styles. For one piece of speech, different
talking styles exhibit significant differences in the facial and head
pose movements. For example, the "excited" style usually talks with
the mouth wide open, while the "solemn" style is more standardized
and seldomly exhibits exaggerated motions. Due to such huge dif-
ferences between different styles, it is necessary to incorporate the
talking style into audio-driven talking face synthesis framework.
In this paper, we propose to inject style into the talking face syn-
thesis framework through imitating arbitrary talking style of the
particular reference video. Specifically, we systematically investi-
gate talking styles with our collected Ted-HD dataset and construct
style codes as several statistics of 3D morphable model (3DMM)
parameters. Afterwards, we devise a latent-style-fusion (LSF) model
to synthesize stylized talking faces by imitating talking styles from
the style codes. We emphasize the following novel characteristics
of our framework: (1) It doesn’t require any annotation of the style,
the talking style is learned in an unsupervised manner from talking
videos in the wild. (2) It can imitate arbitrary styles from arbitrary
videos, and the style codes can also be interpolated to generate
new styles. Extensive experiments demonstrate that the proposed
framework has the ability to synthesize more natural and expressive
talking styles compared with baseline methods.
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1 INTRODUCTION
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Figure 1: Different talking styles have significant differences
in facial and head pose movements when pronouncing the
word "significant".

The talking face synthesis is an eagerly anticipated technique
for several applications, such as filmmaking, teleconference, vir-
tual/mix reality, and human-computer interaction. One of the key
essences behind the talking face synthesis is the stylization of fa-
cial and head pose movements. Different from the talking emotion
which reflects in the short-term facial motions, the talking style is
a crucial factor which affects long-term facial and head pose move-
ments. People usually talk with diversified talking styles such as
"excited", "solemn", "communicational", "storytelling", et al. Given
one piece of speech, different talking styles exhibit significant dif-
ferences in the facial and head pose movements. For example, as
shown in Figure 1, people with the "excited" style usually talk aloud,
and thus the facial movement of the mouth wide open occurs fre-
quently. Meanwhile, the "solemn" talking style usually appears in
formal occasions, and thus the exaggerated motion seldom occurs.
Considering such huge differences between different styles, in order
to synthesize diversified and realistic talking faces with respect to
one piece of speech, it is necessary to incorporate talking style into
the audio-driven talking face synthesis framework.
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Figure 2: The overall framework of our method contains two stages: the stylized 3D talking face synthesis stage and the
photorealistic render stage. The first stage synthesizes stylized 3D talking faces by imitating talking styles from the style
codes. The second stage synthesizes photorealistic videos with deferred neural render and neural texture generation model.
The stylized 3D talking face synthesis stage and the photorealistic render stage are trained separately in our framework. 𝑇
denotes the time dimension of DeepSpeech features. For the calculation of style codes, even style reference videos from one
identity would yield diversified style codes.

Previous efforts [10, 36] have shown the rationality of synthe-
sizing stylized talking faces. Yi et al. [36] proposed Memory Aug-
mented GANmodel to synthesize stylized talking face with the wild
training data. Cudeiro et al. [10] proposed Voice Operated Character
Animation (VOCA) model to learn the identity-wise talking style.
The VOCA model captures the talking style of each identity by in-
jecting the one-hot identity vector into the audio-motion predicting
network. Overall, these methods have the following two disadvan-
tages which constrain the expressiveness of the synthesized talking
styles: (1) These methods assume that each identity has only one
talking style. However, in the real scenario, the talking style is only
relatively stable inside one video clip, one person can talk with
significantly different styles among different video clips. (2) These
methods require substantial labour to collect adequate synchro-
nized audio-visual data for each identity, which is unavailable for
the wild scenarios.

To address the aforementioned problems, we propose to synthe-
size stylized talking faces by imitating styles from arbitrary clips
of videos. With such motivation, the talking videos with stable
and diversified talking styles are in need. Therefore, we collect the
Ted-HD dataset which has 834 clips of videos with 60 identities.
Each video clip has an average length of 23.5 seconds. The talking
styles of the Ted-HD dataset are diversified, and the talking style
inside each video clip is stable.

Based on the constructed dataset, we devise a two stage talking
face synthesis framework as shown in Figure 2. The first stage imi-
tates talking styles from arbitrary videos and synthesizes 3D talking
faces according to the driven speech. Afterwards, in the second
stage, we render the 3D face model photo-realistically from one
static portrait of the speaker. Overall, the key idea of our framework
is to construct style codes from video clips in the wild, and then

synthesize talking faces by imitating the talking styles from the
constructed style codes. Specifically, for the style codes construc-
tion, we conduct exhaustive observations on the Ted-HD dataset,
which on one hand verify that even one identity has multiple talk-
ing styles, on the other hand find that the talking style is closely
related to the variance of facial and head pose movements inside
each video. With our observations, we define the style codes as
several interpretable statistics of 3D morphable model (3DMM) [2]
parameters. Having obtained the style codes of each talking video,
we devise a latent-style-fusion (LSF) model to synthesize stylized
3D talking faces by imitating talking styles from the style codes.
Detailedly, the LSF model first dropouts [27] information from the
audio stream to prevent the audio from dominating the synthesis
process. Further, the LSF model fuses the style codes with the latent
audio representation frame-by-frame to synthesize 3D talking face
with corresponding talking style. The overall implementation of the
LSF model is simple but effective. Our model not only circumvents
the annotation for talking styles and avoids collecting substantial
training data for each identity, but also enables new talking style
generation.

With our proposed framework, talking faces with diversified
styles can thus be synthesized. We perform experiments on the
Ted-HD dataset for evaluation. Compared with baseline methods,
our framework synthesizes more expressive and diversified talk-
ing styles. We conduct extensive user studies to investigate the
facial motion naturalness and audio-visual synchronization. With
the mean opinion score (MOS) of 20 participants, our framework
outperforms baseline methods by 0.67 on average in terms of facial
motion naturalness and 0.11 on average in terms of audio-visual
synchronization.

To summarize, our contributions are summarized as three-fold:



• We propose to synthesize stylized talking faces by imitating
talking styles of arbitrary videos. The incorporation of style
imitation leads to more diversified talking styles.
• We formalize the style codes of each talking video and devise
the latent-style-fusion (LSF) model to synthesize stylized
3D talking faces from style codes and driven audio. Our
framework do not require any annotation of talking styles
for stylized talking face synthesis.
• We collect Ted-HD dataset, which contains 834 clips of wild
talking videoswith stable and diversified talking styles. Based
on the Ted-HD dataset, we conduct extensive style observa-
tions and synthesize expressive talking styles. Code and
dataset are publicly available 1.

2 RELATEDWORK
Talking face synthesis has received significant attention in previous
literatures. Related work in this area can be grouped into two cate-
gories: the unimodal talking face synthesis [5, 18, 24, 29, 35, 39, 40]
and the multimodal talking face synthesis [10, 13, 19, 32, 36, 38].
For one piece of driven speech, the unimodal talking face synthe-
sis generates unique motion, while the multimodal talking face
synthesis generates diversified facial and head pose movements.

Most of the prior works focused on the unimodal talking face
synthesis. Karras et al. [21] proposed to synthesize 3D talking face
with driven audio and emotion state. Suwajanakorn et al. [28]
synthesized high quality videos of talking Obama through hours
of Obama’s weekly address footage. Since that Suwajanakorn’s
method requires hours of data for each identity, several methods [4–
6, 24, 29, 37, 39, 41] proposed to simultaneously reduce the required
duration of training data and guarantee the photorealism of the syn-
thesized video. The ATVG framework proposed by Chen et al. [6]
and the DAVS framework proposed by Zhou et al. [39] synthesize
talking face with only one image. Despite that these unimodal talk-
ing face synthesis methods can synthesize photo-realistic videos,
the lack of style results in the stiffness of the synthesized results.

To synthesize diversified facial and head pose movements, some
recent literatures addressed the multimodal talking face synthe-
sis. Wang et al. [32] and Eskimez et al. [13] achieved multimodal
synthesis through incorporating emotion condition vector, which
enables the generation of diversified facial expressions. However,
the synthesized results of these methods still lack in personality
because of the overlook of talking style. To address this issue, some
methods [10, 36] proposed to incorporate talking style into the syn-
thesis framework. Yi et al. [36] proposed Memory-Augmented GAN
model to synthesize stylized talking face with wild training data.
However, only the head pose is synthesized with multiple styles,
while the facial movements still lack personality. Further, Cudeiro et
al. [10] proposed the Voice Operated Character Animation (VOCA)
model to learn the identity-wise talking style. The VOCA model
injects one-hot identity vector into the audio-motion predicting
network, leading to discriminative styles of facial and head pose
movements. However, the VOCA model on one hand requires sub-
stantial data for each identity, on the other hand forces one identity
to have only one talking style, limiting its capacity on synthesizing

1https://github.com/wuhaozhe/style_avatar

diversified styles. To resolve this problem, in this work, we propose
to imitate talking styles from arbitrary wild talking videos.

3 PROBLEM FORMULATION
In this paper, we propose a two-stage talking face synthesis frame-
work which synthesizes stylized talking videos with the following
three inputs: one static portrait of the speaker, the driven audio
and the style reference video. We formalize the first stage of the
framework as the 3D talking face synthesis stage and the second
stage as the photorealistic render stage. Between two stages, we ap-
ply the 3DMM face model [2] as a crucial bridge. Therefore, before
formally defining the two stages, we firstly give a brief introduction
of the face model we use.

We leverage the 3DMM face model to represent each 3D face.
With 3DMM, the face shape S is represented as an affine model of
facial expression and facial identity:

S = S(𝛼, 𝛽) = S̄ + B𝑖𝑑𝛼 + B𝑒𝑥𝑝𝛽, (1)
where S̄ ∈ R𝑁×3 is the average face shape; N is the number of
the vertexes in the face model; B𝑖𝑑 and B𝑒𝑥𝑝 are the PCA bases of
identity and expression; 𝛼 and 𝛽 are the identity parameters and
the expression parameters. Following deng et al. [12], we adopt
the 2009 Basel Face Model [23] for S̄, B𝑖𝑑 , and use expression bases
B𝑒𝑥𝑝 of Guo et al. [14] built from Facewarehouse [3], resulting in
𝛼 ∈ R80, 𝛽 ∈ R64. Afterwards, the 3D face shape is projected on the
2D plane according to the head pose and translation 𝑝 ∈ R7, where
4 elements represent the pose quaternion and 3 elements represent
the translation. Overall, the parameter set (𝛼, 𝛽, 𝑝) controls the
appearance of each face. In our framework, the facial movements
are the time series of parameter 𝛽 , which we denote as 𝛽 (𝑡), while
the head pose movements are the time series of parameter 𝑝 , which
we denote as 𝑝 (𝑡). With 𝛽 (𝑡) and 𝑝 (𝑡), we formalize the two stages
of our framework as follows.

3D Talking Face Synthesis Stage. In this stage, given driven
audio X𝑎 , the facial and head pose movements of style reference
video 𝛽𝑠𝑡𝑦 (𝑡), 𝑝𝑠𝑡𝑦 (𝑡), we aim to generate corresponding facial and
head pose movements 𝛽𝑝𝑟𝑒𝑑 (𝑡), 𝑝𝑝𝑟𝑒𝑑 (𝑡).

Photorealistic Render Stage. In this stage, given the predicted
movements 𝛽𝑝𝑟𝑒𝑑 (𝑡), 𝑝𝑝𝑟𝑒𝑑 (𝑡) and the input portrait X𝑝 , we aim
to generate photorealistic videos Y.

4 TALKING STYLE OBSERVATION
In this section, we systematically investigate how different talking
styles reflect in the facial and head pose movements 𝛽 (𝑡), 𝑝 (𝑡).
Afterwards, we formally define interpretable style codes for each
video based on our observation.

In order to observe talking styles of each video, we should firstly
collect a suitable dataset for observation. The video for the style
observation requires the following characteristics: (1) It should be
of high resolution, (2) it should contain natural and expressive fa-
cial and head pose movements, (3) each clip of video cannot be too
short, or the talking style can hardly be observed, (4) the talking
style should both be stable inside the clip and be diversified across
different clips, (5) the camera pose and location should be static
inside each clip, otherwise the head pose parameters will be influ-
enced by the camera movements. Considering the characteristics

https://github.com/wuhaozhe/style_avatar


0.0 0.2 0.4 0.6 0.8 1.0

x

0.0

0.2

0.4

0.6

0.8

1.0

y

Talking Style

Excited

Tedious

Solemn

0.0 0.2 0.4 0.6 0.8 1.0

x

0.0

0.2

0.4

0.6

0.8

1.0

y

Talking Style

Excited

Tedious

Solemn

0.0 0.2 0.4 0.6 0.8 1.0

x

0.0

0.2

0.4

0.6

0.8

1.0

y

Talking Style

Excited

Tedious

Solemn

0.0 0.2 0.4 0.6 0.8 1.0

x

0.0

0.2

0.4

0.6

0.8

1.0

y

Talking Style

Excited

Tedious

Solemn

+(#)

,(#)

'(⋅) )(⋅) '(-(⋅)-# ) )(-(⋅)-# )

0.0 0.2 0.4 0.6 0.8 1.0

x

0.0

0.2

0.4

0.6

0.8

1.0

y

Talking Style

Excited

Tedious

Solemn

0.0 0.2 0.4 0.6 0.8 1.0

x

0.0

0.2

0.4

0.6

0.8

1.0

y

Talking Style

Excited

Tedious

Solemn

0.0 0.2 0.4 0.6 0.8 1.0

x

0.0

0.2

0.4

0.6

0.8

1.0

y

Talking Style

Excited

Tedious

Solemn

0.0 0.2 0.4 0.6 0.8 1.0

x

0.0

0.2

0.4

0.6

0.8

1.0

y

Talking Style

Excited

Tedious

Solemn

Figure 3: Correlation between talking styles and 3DMM parameter series. We investigate 8 different statistics and find that
𝜎 (𝛽 (𝑡)), 𝜎 ( 𝜕𝛽 (𝑡 )𝜕𝑡 ), 𝜎 (

𝜕𝑝 (𝑡 )
𝜕𝑡 ) are mostly correlated with talking styles.

above, current publicly available wild datasets like VoxCeleb2 [7]
and LRS3 [1] are much too noisy and thus do not meet the re-
quirements. Meanwhile, several in-lab datasets like MEAD [33] and
GRID [9] do not have natural facial expressions and head poses,
which dissatisfy the requirements either.

To address this issue, we manually collect a wild dataset Ted-HD
which is suitable for style observation and further style synthesis.
The Ted-HD dataset selects several speech videos from Ted website.
Each video in the dataset has one person giving a speech, which
focuses on the facial part of each person and is of high resolution.
We cut each video into several clips according to the scene change.
Totally, Ted-HD dataset contains 834 clips of videos with 60 identi-
ties. The average length of each clip is 23.5 seconds, and the total
duration of the dataset is 6 hours. The talking style of these videos
are diversified across different clips. Even for the same identity,
there could be different talking styles.

Having obtained the dataset, for each video, we reconstruct the
facial and head pose movements 𝛽 (𝑡), 𝑝 (𝑡). We conduct exhaustive
data observations on the correlation between talking style and
𝛽 (𝑡), 𝑝 (𝑡), with the aim of answering the following questions:
• Q1: Whether one identity has multiple talking styles.
• Q2: How the talking style is reflected in time series 𝛽 (𝑡), 𝑝 (𝑡).

To answer the Q1, we verify the talking style diversity of each
identity through user study with A/B test. Specifically: we first
randomly construct 100 triplets, each triplet contains two talking
videos 𝑣1, 𝑣2 from the same identity and one talking video 𝑣3 from
the other identity. Next, we reconstruct 𝛽 (𝑡), 𝑝 (𝑡) of 𝑣1, 𝑣2, 𝑣3, retar-
get 𝛽 (𝑡), 𝑝 (𝑡) to the same identity and render the retargeted faces
to videos. The retargeted videos are signified as 𝑣 ′1, 𝑣

′
2, 𝑣
′
3. After-

wards, we show 𝑣
′
1, 𝑣
′
2, 𝑣
′
3 and their transcripts to users, asking the

following question: which pair of (𝑣 ′1, 𝑣
′
2) and (𝑣

′
1, 𝑣
′
3) has more sim-

ilar talking styles. Statistics demonstrate that among 100 triplets,
(𝑣 ′1, 𝑣

′
3) is more similar in 30 triplets, while (𝑣 ′1, 𝑣

′
2) is more similar in

70 triplets. With the statistics that 30% of videos inside each identity

have dissimilar talking styles, we conclude that one identity has
multiple talking styles.

Since that the talking style is not consistent for each identity,
formulating style codes is necessary. Therefore, in Q2, we conduct
experiments to find how talking style is reflected in time series
𝛽 (𝑡), 𝑝 (𝑡). Specifically, we first randomly select 300 talking videos
and annotate the talking style of these videos to three categories:
tedious, solemn, and excited. Afterwards, for the motion series
𝛽 (𝑡), 𝑝 (𝑡) of each video, we calculate its derivative series with re-
spect to time 𝑡 : ( 𝜕𝛽 (𝑡 )𝜕𝑡 ,

𝜕𝑝 (𝑡 )
𝜕𝑡 ). Next, we calculate the mean value

𝜇 (·) and the standard deviation 𝜎 (·) of (𝛽 (𝑡), 𝑝 (𝑡), 𝜕𝛽 (𝑡 )𝜕𝑡 ,
𝜕𝑝 (𝑡 )
𝜕𝑡 )

along time, yielding 8 feature vectors (4 for mean, 4 for standard
deviation). To observe the relationship between these feature vec-
tors and talking styles, we leverage t-SNE algorithm [31] to vi-
sualize each feature vector and plot points from different style
categories with different colors, as shown in Figure 3. Figure 3
demonstrates that the talking style is closely related with 𝜎 (𝛽 (𝑡)),
𝜎 ( 𝜕𝛽 (𝑡 )𝜕𝑡 ), 𝜎 (

𝜕𝑝 (𝑡 )
𝜕𝑡 ), especially 𝜎 ( 𝜕𝑝 (𝑡 )𝜕𝑡 ). Meanwhile the talking

style is less related with 𝜇 (·), which denotes that the talking style
is mostly reflected in the fluctuation of movements, rather than the
idle state of movements.

Based on such observation, we define the style codes as the stan-
dard deviation of facial and head pose movements. Formally, given
arbitrary video with the reconstructed parameter series 𝛽 (𝑡), 𝑝 (𝑡),
the style codes sty are defined as:

sty = 𝜎 (𝛽 (𝑡)) ⊕ 𝜎 ( 𝜕𝛽 (𝑡)
𝜕𝑡
) ⊕ 𝜎 ( 𝜕𝑝 (𝑡)

𝜕𝑡
), (2)

where ⊕ signifies the vector concatenation.
To summarize, we make the following two conclusions: (1) one

identity have multiple talking styles, (2) the talking style is closely
related to the variance of facial and head pose movements inside
each video, following which we define the style codes in Equation 2.
The style codes are utilized to synthesize diversified talking styles,
details will be illustrated in the section 5.



5 METHODOLOGY
Following the style codes defined in section 4, we propose a two-
stage talking face synthesis framework to imitate arbitrary talking
styles, as shown in Figure 2. Our framework synthesizes stylized
talking videos with the following three inputs: one static portrait of
the speaker, the driven audio and the style reference video. In the
first stage of our framework, we devise a latent-style-fusion (LSF)
model to synthesize stylized 3D talking faces through imitating
arbitrary talking styles. Based on the synthesized 3D talking faces,
in the second stage, we leverage the deferred neural render [30] and
few-shot neural texture generation model to generate video frames
photo-realistically. In the next two subsections, we will introduce
the two stages respectively.

5.1 Stylized 3D Talking Face Synthesis
In the first stage of our framework, we propose the latent-style-
fusion (LSF) model for talking face synthesis. Overall, the input of
the LSF model is the driven audio and the reference talking video
for style imitation. The LSF model learns motion related informa-
tion from audio, and then combines latent audio representation
with style information to synthesize 3D talking meshes with target
talking style. Details will be illustrated as follows.

For the driven input audio X𝑎 of 𝑇 seconds, we firstly leverage
the DeepSpeech [15] model to extract speech features. Deepspeech
is a deep neural model for automatic speech recognition (ASR).
The extracted features from DeepSpeech not only contains rich
speech information but also is robust to background noise and
generalizes well to different identities. Feeding the input audioX𝑎 to
the DeepSpeechmodel, yields latent representationsX𝑑 ∈ R50𝑇×𝐷𝑎 ,
where 𝐷𝑎 is the dimension of the DeepSpeech features, and 50𝑇
denotes that the DeepSpeech features have 50 frames per second.
Afterwards, for the reference talking video, we calculate its style
codes sty ∈ R𝐷𝑠 as illustrated in Section 4 for style imitation, where
𝐷𝑠 is the dimension of the style codes.

Having obtained the X𝑑 and sty, we now elaborate the 3D talk-
ing face synthesis process. We devise a latent-style-fusion (LSF)
model, which takes X𝑑 ∈ R50𝑇×𝐷𝑎 and sty ∈ R𝐷𝑠 as input, outputs
facial movements 𝛽𝑝𝑟𝑒𝑑 (𝑡) ∈ R25𝑇×64 and head pose movements
𝑝𝑝𝑟𝑒𝑑 (𝑡) ∈ R25𝑇×7 with 25 frames per second. Based on 𝛽𝑝𝑟𝑒𝑑 (𝑡)
and 𝑝𝑝𝑟𝑒𝑑 (𝑡), we reconstruct the 3D talking meshes with the 3DMM
face model [2].

The LSF model leverages a latent fusion mechanism to both syn-
thesize stylized faces and guarantee the synchronization between
audio and motion. Specifically, as shown in Figure 2, the LSF model
firstly takes audio X𝑑 as input and encodes X𝑑 with the bottom
part of ResNet-50 [16], yielding latent audio representation X𝑙 . Af-
terwards, the LSF model fuses the latent audio representation X𝑙

and style codes sty to acquire mixed representation for synthe-
sis. During the fusion process, the LSF model first dropouts the
latent audio representation X𝑙 to obtain X

′

𝑙
, while the information

from sty remains unchanged. Next, the LSF model concats each
frame of X

′

𝑙
with style codes sty, leading to the mixed representa-

tion. Further, the LSF model leverages the top part of ResNet-50
to predict facial movements 𝛽𝑝𝑟𝑒𝑑 (𝑡) and head pose movements
𝑝𝑝𝑟𝑒𝑑 (𝑡) from the mixed representation. It’s noteworthy to stress
that the fusion between latent audio representation and style codes

enables the synthesis of more expressive talking styles. Meanwhile,
the dropout of audio information prevents from discarding style
information for synthesis. The overall implementation of the LSF
model is simple but effective.

For the training stage of the LSF model, we adopt the parameter
series 𝛽 (𝑡), 𝑝 (𝑡) reconstructed from the 3D face reconstruction
algorithm [12] as ground truth. For each training video, we calculate
its style codes sty and randomly clip the the input audio X𝑑 and
the ground truth 𝛽 (𝑡), 𝑝 (𝑡) to fixed length. Afterwards, we feed
X𝑑 and corresponding sty to the LSF model, yielding the predicted
expression parameter series 𝛽𝑝𝑟𝑒𝑑 (𝑡) and 𝑝𝑝𝑟𝑒𝑑 (𝑡). Based on the
predicted 𝛽𝑝𝑟𝑒𝑑 (𝑡) and 𝑝𝑝𝑟𝑒𝑑 (𝑡), we apply the L1 loss as follows:

LL1 = | |𝛽 (𝑡) − 𝛽𝑝𝑟𝑒𝑑 (𝑡) | |1 + ||𝑝 (𝑡) − 𝑝𝑝𝑟𝑒𝑑 (𝑡) | |1 . (3)
It is worth emphasizing that the training of the LSF model doesn’t
require any additional annotation on the speaking identity. Only
by training on wild videos with stable talking styles, we obtain
expressive style space.

During the inference stage, feeding style codes of arbitrary talk-
ing videos to LSF model not only yields desired talking styles but
also maintains the synchronization between the driven audio and
talking faces. Meanwhile, we can interpolate among different talk-
ing styles to acquire new talking styles. For the audio representation
X𝑑 with arbitrary duration, since that the trained LSF model only
digests the audio with fixed length, we apply the slide window strat-
egy to synthesize the corresponding facial movements 𝛽𝑝𝑟𝑒𝑑 (𝑡) and
head pose movements 𝑝𝑝𝑟𝑒𝑑 (𝑡).

So far, we have obtained the untextured talking 3D faces. In
the next subsection, we’ll introduce how we render these 3D faces
photo-realistically.

5.2 Photorealistic Render
Conventional deferred neural render [30] requires substantial train-
ing data for each identity. In order to both synthesize photorealistic
results and guarantee the few-shot capacity, we devise a few-shot
neural texture generation model and combine the generated neural
texture with the deferred neural render, which enables synthesizing
photorealistic videos with only one source portrait. As shown in
Figure 2, the deferred neural render incorporates the generated
neural texture, conducts UV texture sampling on the neural texture,
and translates the sampled image to photorealistic domain.

Algorithm 1 UV Texture Sampling

1: X𝑢𝑣 ∈ R2×𝐻×𝑊
2: Y𝑡 ∈ R𝐷𝑡×𝐻𝑡×𝑊𝑡

3: X𝑠 ∈ R𝐷𝑡×𝐻×𝑊

4: for 𝑖 ← 1 to 𝐻 do
5: for 𝑗 ← 1 to𝑊 do
6: 𝑢 = X𝑢𝑣 [0, 𝑖, 𝑗]
7: 𝑣 = X𝑢𝑣 [1, 𝑖, 𝑗]
8: X𝑠 [:, 𝑖, 𝑗] = BilinearSample(Y𝑡 , 𝑢, 𝑣)
9: return X𝑠

Detailedly, for the input 3D talking faces, we firstly leverage
the UVAtlas tool 2 to obtain the UV coordinate of each vertex in
2https://github.com/microsoft/UVAtlas



the 3D model. Afterwards, we rasterize the 3D face model to 2D
image X𝑢𝑣 ∈ R2×𝐻×𝑊 , of which each pixel represents the UV
coordinate. Subsequently, for the input portrait X𝑝 ∈ R3×𝐻×𝑊 and
the 3D face model, we extract the RGB texture X𝑡 ∈ R3×𝐻𝑡×𝑊𝑡 ,
where𝐻𝑡 ,𝑊𝑡 signifies the height and width of the texture. Based on
X𝑡 , we leverage the pix2pix [17] model to generate neural texture
Y𝑡 ∈ R𝐷𝑡×𝐻𝑡×𝑊𝑡 , where 𝐷𝑡 signifies the dimension of the neural
texture. With the neural texture, we conduct UV texture sampling
on X𝑢𝑣 to obtain the sampled image X𝑠 ∈ R𝐷𝑡×𝐻×𝑊 , the details of
the sampling algorithm are illustrated in the Algorithm 1. Finally,
we translate the sampled image X𝑠 to photorealistic image through
the pix2pixHD [34] model.

During the training stage, the few-shot texture generation model
and the deferred neural render model are trained simultaneously.
Given the rasterized input X𝑢𝑣 , we denote the rendered image as
Y
′ and the ground truth image as Y. We combine the perceptual

loss [20] and L1 loss together as L to optimize the neural texture
and pix2pixHD model. Formally:

L = | |Y − Y
′
| |1 + ||𝜙 (Y) − 𝜙 (Y

′
) | |1, (4)

where 𝜙 (·) is the first few layers of VGGNet [26] pretrained on the
ImageNet [11]. Due to the limitation of the 3DMM face model, in
our render, we only synthesize the facial part of the image, without
considering the hair and background rendering.

6 EXPERIMENTS
In this section, we conduct extensive experiments to demonstrate
the effectiveness of our framework. We evaluate our framework
on the collected Ted-HD dataset. Our method has acquired better
synthesis results both qualitatively and quantitatively.

6.1 Dataset
As illustrated in Section 4, the currently available datasets are either
collected in lab which have constrained talking styles or collected
in the wild of which the talking styles are unstable and noisy. There-
fore for the training and testing of the LSF model, we leverage the
Ted-HD dataset described in Section 4. Totally, the Ted-HD dataset
has 834 clips of videos, we select 799 clips for training, and hold out
the remained 35 for testing. The training set and test set have no
overlap on identities. Additionally, for the training of the deferred
neural render and the few-shot neural texture generation model,
we leverage the Lip Reading in the Wild (LRW) [8] dataset.

6.2 Implementation Details
During the training of the LSF model, the input DeepSpeech audio
features have 50 frames per second (FPS), while each frame has the
dimension 𝐷𝑎 of 29. The input style codes sty have the dimension
𝐷𝑠 of 135 (64 for 𝜎 (𝛽 (𝑡)), 64 for 𝜎 ( 𝜕𝛽 (𝑡 )𝜕𝑡 ), 7 for 𝜎 ( 𝜕𝑝 (𝑡 )𝜕𝑡 )). The
predicted facial movements 𝛽𝑝𝑟𝑒𝑑 (𝑡) and the head pose movements
𝑝𝑝𝑟𝑒𝑑 (𝑡) have 25 frames per second. For the convenience of training,
we randomly clip the input to 80 frames, and clip the output to
32 frames. For the implementation of the LSF model, we apply
the ResNet-50 as the backbone. We leverage the first 16 layers of
ResNet-50 to encode the DeepSpeech features, combine the encoded

features with style codes, and leverage the last 34 layers of ResNet-
50 to predict the motion series. When optimizing, we adopt the
Adam optimizer [22] to train the LSF model with the initial learning
rate of 5 × 10−4. We train for 50000 iterations with a mini-batch
size of 128 samples.

During the training of the deferred neural render and the few-
shot neural texture generation model, the input UV image X𝑢𝑣

has a size of 2 × 224 × 224, while the neural texture has a size of
16 × 64 × 64. The dimension 𝐷𝑡 of the texture is set to 16, which
enables each pixel to contain richer texture information. Meanwhile,
the texture size is set to be smaller than the UV image size, which
avoids oversampling in the sample process. The output image X𝑠 is
conventional RGB image with size of 3×224×224. When optimizing,
we adopt the Adam optimizer to simultaneously train the neural
render and the texture generation model. The learning rate is set
to 2 × 10−4. We train for 1000000 iterations with mini-batch size of
6 samples.

6.3 Comparison with VOCA on Style Synthesis
To the best of our knowledge, the VOCA model [10] is the only
available method that captures diversified talking styles of facial
movements. Therefore, in this section, we systematically compare
our method with the VOCAmodel [10] to demonstrate the effective-
ness of the LSF model. Different from our method, the VOCAmodel
learns identity-level talking styles. Specifically, the VOCA model
injects a one-hot identity code to the time convolution network,
and directly predicts face model vertexes from the DeepSpeech
features and the identity code. By adjusting the one-hot identity
code, the VOCA model outputs different talking styles.

Table 1: Themean opinion scores (MOS) of differentmetrics,
higher signifies better. TSE denotes talking style expressive-
ness, FMN denotes facial movement naturalness, and AVS
denotes audio-visual synchronization.

TSE FMN AVS
VOCA [10] 3.28 3.13 3.56

LSF 3.41 3.21 3.64

We compare the style space learned from the VOCA model and
the style space learned from the LSF model with extensive user
studies. Specifically, we randomly select 10 clips of driven audio,
each with a duration from 10 to 20 seconds. Afterwards, we ran-
domly sample 5 talking styles from the VOCA style space and 5
talking styles from the style space of our method. With the sampled
talking styles and the driven audio, we synthesize corresponding
talking faces and retarget the synthesized faces to the same identity.
Afterwards, we subsume videos with the same driven audio and
synthesis model to the same group. For each group of video, we
invite 20 participants to rate (1) the expressiveness of the talking
style, (2) the naturalness of facial movements, (3) the audio-visual
synchronization between driven audio and talking face. We ask
participants to rate the mean opinion score (MOS) [25] in the range
1-5 (higherMOS score denotes better results).When showing videos
to participants, since that the VOCA model only gives untextured
3D faces, we also just give the 3D talking faces synthesized from the
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Figure 4: The interpolation results between excited talking style and solemn talking style with the same driven audio. The first
row has solemn talking style, and the last row has excited talking style, while the middle row has the average style between
the first and the last. Among these rows, we observe smooth transition of facial and head pose movements.

LSF model, without utilizing the deferred neural render to generate
photorealistic results for fair comparison.

Table 1 demonstrates the results of user studies. Through the
experimental results, we observe that our LSF model has acquired
higher talking style expressiveness, which verifies that the style
space learned by taking style imitation is more expressive than the
identity-level style space. Meanwhile, our LSF model outperforms
the VOCA model by 0.08 in terms of the facial movement natural-
ness and audio-visual synchronization. Such results confirm the
effectiveness of style imitation in LSF model further. Additionally,
compared with the VOCA model which requires substantial train-
ing data for each identity, our method is trained on wild dataset
which does not require any annotation on identity or talking style.

6.4 Study on the Style Space
In this section, we extensively investigate the style space learned
in our method. We conduct two qualitative experiments, which
verify that not only the synthesized talking styles are diversified,
but new talking styles can also be generated from the interpolation
of different talking styles.
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Figure 5: The distance between the lower lip and the upper
lip for the same driven audio conditioned on different talk-
ing styles. Different color denotes different talking styles.

To verify the diversification of the talking styles, we visualize
the distance between lower and upper lip as a function of time.

Specifically, we randomly select one piece of driven audio and 10
different talking styles, and then synthesize 10 facial movements
corresponding to each talking style and driven audio. Afterwards,
we calculate the lip distance as shown in Figure 5. Through Fig-
ure 5 we observe that the lip distance significantly varies among
different talking styles, which verifies that the LSF model is able to
synthesize diversified talking styles. Meanwhile, different talking
styles demonstrate similar trends of fluctuation, the peak and the
valley of the distance curve highly overlap, which confirms that
the LSF model also guarantees the synchronization between audio
and synthesized motions.

To confirm that the style space in the LSF model is expressive
and interpolative, we visualize the interpolation results of different
talking styles, as shown in Figure 4. Detailedly, we select two rep-
resentative talking styles: excited and solemn, and conduct linear
interpolation between the two styles to generate new talking styles.
From each row of Figure 4, we observe that the facial and head pose
movements translate smoothly from excited talking style to solemn
style. For the excited talking style, the lip motion is exaggerated
and the head frequently shakes. Meanwhile, for the solemn talking
style, the lip motion and head pose are stable. We provide more
synthesis results in the supplementary materials.

6.5 Comparison with One-Shot Synthesis
In this section, we conduct experiments to demonstrate that our
method synthesizes more natural and expressive talking faces com-
pared with several baseline methods. Specifically, we compare our
method with the following baseline methods: (1) the ATVG frame-
work [6], (2) the MakeItTalk framework [41], (3) theWav2Lip frame-
work [24]. For Wav2Lip framework which requires few seconds
of videos as input, we repeat input portrait as videos for fair com-
parison. Figure 6 shows some synthesis results We observe that
our method has more expressive facial movements and head pose
movements while also guarantees the synthesized results to be
photorealistic.

Additionally, we conduct both user studies and quantitative
evaluations on the Ted-HD dataset to verify the effectiveness of
our method. Specifically, for the user studies, we firstly synthesize
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Figure 6: Comparisonwith several baselinemethods (ATVG,MakeItTalk andWav2Lip). Ourmethod not only yields expressive
facial and head pose movements, but also synthesizes photorealistic videos.

videos with the randomly selected 20 clips of driven audios and 5
different identities. Afterwards, for each video, we invite 20 par-
ticipants to rate (1) the naturalness of facial movements, (2) the
audio-visual synchronization between driven audio and talking face.
The mean opinion score (MOS) is rated in the range 1-5. Besides, we
also evaluate the synthesized video quality with the signal-noise-
ratio (SNR) metric. We do not leverage the PSNR metric since that
the ground truth talking videos with arbitrary talking styles are
not available.

Table 2: Comparison with baseline methods on the Ted-
HD dataset, where FMN denotes facial movement natural-
ness, and AVS denotes audio-visual synchronization. The
Pre-Fusion method removes latent style fusion in the LSF
model, details are illustrated in Section 6.6

FMN AVS SNR (dB)
ATVG [6] 2.71 3.51 2.98

MakeItTalk [41] 3.08 3.13 3.01
Wav2Lip [24] 2.97 4.28 2.78
Pre-Fusion 2.19 2.25 5.70

Ours 3.59 3.75 5.76

Table 2 shows the comparison results. From Table 2 we observe
that our method has achieved the most expressive facial motion and
best video quality.We also notice that theWav2Lip method achieves
unsatisfying motion naturalness since that it cannot resolve the one-
shot synthesis scenario. Meanwhile, we observe that the AVS of our
method is slightly lower than Wav2Lip, that is because the talking
style synthesis in our LSF model mildly sacrifices the performance
of audio-visual synchronization, but our method still has better
AVS performance compared with ATVG and MakeItTalk.

6.6 Effectiveness of Latent Style Fusion
To verify the rationality of the latent style fusion mechanism in
LSF model, we conduct the following ablation experiments. For

comparison, we remove the latent style fusion mechanism, and
directly concatenate DeepSpeech representation with style codes
as the input of ResNet-50. Afterwards, we compare the synthesized
results with LSF model through similar user studies as Section 6.5
does. The experimental results are shown in the last two rows of
Table 2. From the results we observe that the motion naturalness
and audio-visual synchronization would degrade significantly once
we remove the latent style fusion mechanism, which verifies the
effectiveness of the latent style fusion. Meanwhile, the video quality
remains constant since that the motion synthesis does not influence
the photorealistic render stage.

7 CONCLUSION
In this paper, we propose the concept of style imitation for audio-
driven talking face synthesis. To imitate arbitrary talking styles,
we firstly formulate the style codes of each talking video as several
interpretable statistics of 3DMM parameters. Afterwards, we devise
a latent-style-fusion (LSF) model to synthesize stylized talking faces
according to the style codes and driven audio. The incorporation of
style imitation not only circumvents the annotation for talking style
during the training phase, but also endows the capacity of arbitrary
style synthesis and new talking style generation. Additionally, to
synthesize expressive talking styles, we collect Ted-HD dataset with
834 clips of talking videos, which contains stable and diversified
talking styles.We conduct extensive experiments on the constructed
dataset and obtain expressive synthesis results with our Ted-HD
dataset and LSF model. The constructed Ted-HD dataset will be
made publicly available in the future. We hope that the proposal of
talking style imitation and the construction of Ted-HD dataset pave
a new way for audio-driven talking face synthesis.
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