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ALTHOUGH GREAT PROGRESS has been made in automatic 
speech recognition (ASR), significant performance 
degradation still exists in very noisy environments. Over 
the past few years, Chinese startup AISpeech has been 
developing very deep convolutional neural networks 
(VDCNN),21 a new architecture the company recently 
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began applying to ASR use cases.
Different than traditional deep 

CNN models for computer vision, 
VDCNN features novel filter de-
signs, pooling operations, input 
feature map selection, and padding 
strategies, all of which lead to more 
accurate and robust ASR perfor-
mance. Moreover, VDCNN is further 
extended with adaptation, which 
can significantly alleviate the mis-
match between training and testing. 

Factor-aware training and cluster-
adaptive training are explored to 
fully utilize the environmental 
variety and quickly adapt model 
parameters. With this newly pro-
posed approach, ASR systems can 
improve the system robustness and 
accuracy, even in under very noisy 
and complex conditions.1

JD AI Research (JD), based in 
Beijing, China, has also made 
progress in auditory perception, 

http://dx.doi.org/10.1145/3481625
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Figure 1. Models for sound event detection and localization.
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Figure 2. System diagram of densely connected multi-stage model for real-time speech enhancement.
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aiming to detect and localize 
sound events, enhance target sig-
nals, and suppress reverberation. 
This is important not only because 
it enhances signals for speech 
recognition, but also because such 
information can be used for better 
decision-making in subsequent 
dialog systems.

For sound-event detection, 
as shown in Figure 1, a multi-
beamforming-based approach is 
proposed: the diversified spatial 
information for the neural network 
is extracted using beamforming 
towards different directions.32 For 
speech dereverberation, optimal 
smoothing-factor-based prepro-
cessing is used to obtain a better 
presentation for the dereverberation 
network.10 Beamforming and speech 
dereverberation are also used to gen-
erate augmented data for multichan-
nel far-field speaker verification.22 In 
terms of speech enhancement, neu-
ral Kalman filtering (KF) is proposed 
to combine conventional KF and 
speech evolution in an end-to-end 
framework.31

JD also ranked third in both the 
sound event localization and detec-
tion task of DCASE 2019 Challenge, 
and the FFSVC 2020 Challenge for 
far-field speaker verification.

For real-time speech enhance-
ment, China-based Internet com-
pany Sogou proposes a deep complex 
convolution recurrent network (DC-
CRN) with restricted parameters and 
latency.9 Different from real-valued 

networks, DCCRN adopts the com-
plex CNN, complex long short-term 
memory (LSTM), and complex batch 
normalization layers, which are bet-
ter suited for processing complex-
valued spectrograms. Moreover, as 
shown in Figure 2 and Figure 3, a 
computational, efficient, real-time 
speech-enhancement network is 
proposed with densely connected, 
multistage structures.11 The model 
applies sub-band decomposition 
and progressive strategy to achieve 
superior denoising performance with 
lower latency.

For end-to-end ASR, self-attention 
networks (SAN) in transformer-based 
architectures23 show promising per-
formance, so a transformer-based, 
attention-based encoder/decoder 
(AED) is selected as the base archi-
tecture.

One approach is to improve AED 
performance for non-real-time 
speech transcription. Transform-
er-based architectures can eas-
ily achieve slightly better results 
than traditional hybrid systems 
in ordinary scenarios. However, 
transformer-based models collapse 
under some conditions, such as 
conversational speech and recog-
nition of proper nouns. Relative 
positional embedding (RPE) and 
parallel scheduled sampling (PSS)39 
are adopted to improve generaliza-
tion and stability. As transformer 
architecture is good at global model-
ing, and speech recognition relies 
more on local information, local 

modeling is further combined with 
CCNs and feedforward sequential 
memory networks (FSMN)7 to the 
transformer to improve the mod-
eling of local speech variance. To 
improve acoustic feature extraction 
of encoders, Sogou uses connection-
ist temporal classification (CTC) and 
cross entropy (CE), multitask joint 
training of the transformer. With 
this strategy, a 100,000-hour trans-
former achieves a 25% improvement 
compared to Kaldi-based hybrid 
systems.

A second research strategy is 
streaming AED. To that end, Sogou 
proposed an adaptive monotonic 
chunk-wise attention (AMoChA) 
mechanism,6 which can adaptively 
learn chunk-length at each step to 
calculate context vectors for stream-
ing attention. Transformer acoustic 
range is adaptively computed for 
each token in a streaming decoding 
fashion. For the CTC and CE joint-
trained transformer, CTC output is 
viewed as first-pass decoding while 
the attention-based decoder is seen 
as second-pass decoding. Thus, the 
encoder is trained in a chunk-wise 
manner for streaming AED. This 
method is similar to non-auto-regres-
sive decoding.8

The 100,000-hour streaming AED 
achieved a 15%–20% relative improve-
ment compared to Kaldi-based 
hybrid streaming systems. Gener-
ally, ASR systems and speech en-
hancement (SE) systems are trained 
and deployed separately, because 

Figure 4. The overall diagram of USTC-iFLYTEK front-end processing system for the CHiME-5 challenge.20
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DCCRN adopts 
the complex 
CNN, complex 
long short-term 
memory (LSTM), 
and complex batch 
normalization 
layers, which 
are better suited 
for processing 
complex-valued 
spectrograms.

they typically have different pur-
poses. Moreover, enhanced speech 
is detrimental to ASR performance. 
However, joint training of SE and 
ASR can significantly improve the 
performance of speech in high-noise 
environments while maintaining 
the performance of clean speech. 
For Sogou, the joint training system 
of the CRN-based SE model and the 
transformer-based ASR model re-
sults in an average relative improve-

ment of 23% in noisy conditions and 
5% in clean conditions.

Visual information is another way 
to boost speech recognition perfor-
mance in noisy conditions. Google 
first proposed the Watch, Listen, 
Attend and Spell (WLAS) network, 
which jointly learns audio and visual 
information in the recognition task.4 
Sogou adopted a modality attention 
network based on WLAS40 for adap-
tively integrating audio and visual 

Figure 5. The embeddings for the future and past chunked sentences are concatenated to 
form the Cross Utterance (CU) context vector, which is concatenated with the phoneme 
encoder output vectors to form the input of the decoder.
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Figure 6. StyleTTS architecture.

Prosody Extractor

Prosody Predictor

Speaker
Classifier

Speaker
Classifier

Reference
Encoder

VAE Hidden
(frame)

Hidden State
(frame)

Hidden State
(phoneme)

Speaker
Embedding

Language
Embedding

Predicted
VAE Hidden

Gradient
Reversal

Loss

Gradient
Reversal

Duration
Model

VAE
Predictor Discriminator

DecoderEncoderText LR

Mel Mel

Mel

Training Only

Inference Only



NOVEMBER 2021  |   VOL.  64  |   NO.  11  |   COMMUNICATIONS OF THE ACM     85

big trends      china region

information, which achieved a 35% 
performance improvement in 0-dB 
noisy conditions.

iFLYTEK, together with the 
National Engineering Laboratory 
for Speech and Language Informa-
tion Processing at the University of 
Science and Technology of China 
(USTC), proposed novel, high-di-
mensional regression approaches to 
solve classical speech-signal prepro-
cessing problems and is outperform-
ing traditional methods by relaxing 
the constraints of many mathematical  
model assumptions.5,20,29 The orga-
nization has finished in first place in 
several prestigious challenges,  
including all four tasks of the 
CHiME-5 speech recognition chal-
lenge,20 two tasks of the CHiME-6 
speech recognition challenge,27 all 
tasks of the DIHARD-III Speech Dia-
rization Challenge,15 and the Sound 
Event Localization and Detection 
(SELD) task of the DCASE2020 Chal-
lenge.13 These challenges, especially 
CHiME-5/6 and DIHARD-III, are 
quite relevant to common “cocktail 
party problems” found in real multi-
speaker scenarios. Figure 4 shows 
an overview of the USTC-iFLYTEK 
front-end processing system for the 
CHiME-5 challenge.

Robust Speaker Identification
Deep learning-based methods have 
been widely applied in this research 
area, achieving a new milestone for 
speaker identification and anti-

spoofing. However, it is still difficult 
to develop a robust speaker iden-
tification system under complex, 
real-world scenarios such as short 
utterance, noise corruption, and 
channel mismatch. To boost speaker 
verification performance, AISpeech 
proposes new approaches to achieve 
more discriminant speaker embed-
dings within two frameworks.

Within a cascade framework, a 
neural network-based deep dis-
criminant analysis (DDA)24,26 is sug-
gested to project i-vector to more 
discriminant embeddings. The 
direct-embedding framework uses 
a deep model with more advanced 
center loss and A-softmax loss, 
and focal loss is also explored.25 
Moreover, traditional i-vector and 
neural embeddings are combined 
with neural network-based DDA 
to achieve another improvement. 
Furthermore, AISpeech proposes 
the use of deep generative models—
for example, generative adversarial 
network (GAN) and variational 
autoencoder (VAE) models—to 
perform data augmentation directly 
on speaker embeddings, which 
would be used for robust probabi-
listic linear discriminant analysis 
(PLDA) training and to improve sys-
tem accuracy.2,34 With these newly 
proposed approaches, the speaker 
recognition system can significantly 
improve system robustness and 
accuracy under noisy and complex 
conditions.3

Robust TTS
To build robust and highly efficient 
TTS systems, research on both 
end-to-end network structures and 
neural vocoders was conducted. 
JD proposed an end-to-end speech 
synthesis framework—duration 
informed auto-regressive network 
(DIAN)19—which removes the at-
tention mechanism with the help 
of a separate duration model. This 
eliminates common skipping and 
repeating issues. Efficient WaveGlow 
(EWG), a flow-based neural vocoder, 
was proposed in Song et al.18 Com-
pared with the baseline WaveGlow, 
EWG can reduce inference time cost 
by more than half, without any obvi-
ous reduction in speech quality. To 
study mixed lingual TTS systems, we 
look into speaker embedding and 
phoneme embedding, and study the 
choice of data for model training 
in Xue et al.30 As shown in Figure 5, 
cross-utterance (CU) context vectors 
are used to improve the prosody gen-
eration for sentences in a paragraph 
in end-to-end fashion.28

Sogou also proposed an end-to-end 
TTS framework—Sogou-StyleTTS 
(see Figure 6)—to synthesize highly 
expressive voice.12 For front-end  
text analysis, a cascaded, multitask 
BERT-LSTM model is adopted.  
And the acoustic model is improved 
over FastSpeech,14 which is composed 
of a multilayer transformer encoder-
decoder and a duration model. 
 Hierarchical VAE is used to extract 

Figure 7. The pipeline of the ChoreoNet.
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learning methods on edge devices, 
model compression without ac-
curacy degradation has become 
a core challenge. Neural network 
language models (NNLM) have 
proven to be fundamental compo-
nents for speech recognition and 
natural language processing in the 
deep learning era. Effective NNLM 
compression approaches that are 
independent of neural network 
structures are therefore of great 
interest. However, most compres-
sion approaches usually achieve a 
high compression ratio at the cost 
of significant performance loss. 
AISpeech proposes two advanced, 
structured-quantization tech-
niques, namely product quantiza-
tion16 and soft binarization,36 to 
enable the realization of a very high 
NNLM compression ratio com-
pared to uncompressed models— 
70–100 without performance loss.37 
The diagram of product quanti-
zation for NNLM compression is 
shown in Figure 8.

Conclusion
These research outcomes have been 
widely used in many areas, includ-
ing customer service, robotics, and 
smart home devices. For example, as 
shown in Figure 9, Xiaoice, originally 
developed at Microsoft in Beijing, 
now at XiaoBing.ai, is uniquely 
designed as an artificial intelligence 
companion with an emotional con-
nection to satisfy the human need for 
communication, affection, and so-
cial belonging.17,38 These techniques 
have successfully driven efficient, 
sustainable, and stable development, 
and aim to improve the future of the 
whole society. 

prosodic information unsupervised 
to decouple timbre and rhythm, 
which are considered as style, and  
a rhythm decoder, to predict the 
above prosody information. Using 
this structure, any timbre and rhythm 
can be combined to achieve style  
control and introduce GAN to further 
improve the sound quality, which 
brings the distribution of acoustic 
features closer to real voice. Finally, 
multiband MelGAN architecture33  
is proposed to invert the Mel  
spectrogram feature representation  
into waveform samples. Based  
on StyleTTS, a text-driven,  
digital-human generation system  
is proposed to realize a realistic  
digital human: a multi-modality, 
generative technology to model the 
digital human’s voice, expressions, 
lips, and features jointly.

To generate more realistic facial 
expressions and lip movements, 
both face reconstruction and gen-
erative models are used to map from 
text to video frames. Moreover, to 
generate more expressive actions 
(Figure 7), Sogou cooperated with 
Tsinghua Tiangong Laboratory to 
carry out some exploratory work, 
such as creating digital-human mu-
sic. ChoreoNet,35 a two-stage music-
to-dance synthesis framework, 
imitates human choreography pro-
cedures. The framework first devises 
a CAU prediction model to learn the 
mapping relationship between mu-
sic and CAU sequences. Afterward, a 
spatial-temporal inpainting model is 
devised to convert the CAU sequence 
into continuous dance motions.

Network Compression
Faced with a need to deploy deep 

VDCNN features 
novel filter designs, 
pooling operations, 
input feature map 
selection, and 
padding strategies, 
all of which lead 
to more accurate 
and robust ASR 
performance.

Figure 8. Diagram of product quantization for NNLM compression.
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Figure 9. XiaoIce system architecture.
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