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Abstract. To understand speakers’ attitudes and intentions in real
Voice Dialogue Applications (VDAs), effective emphasis inference from
users’ queries may play an important role. However, in VDAs, there are
tremendous amount of uncertain speakers with a great diversity of users’
dialects, expression preferences, which challenge the traditional empha-
sis detection methods. In this paper, to better infer emphasis for real
voice data, we propose an attentive multimodal neural network. Specif-
ically, first, beside the acoustic features, extensive textual features are
applied in modelling. Then, considering the feature in-dependency, we
model the multi-modal features utilizing a Multi-path convolutional neu-
ral network (MCNN). Furthermore, combining high-level multi-modal
features, we train an emphasis classifier by attending on the textual fea-
tures with an attention-based bidirectional long short-term memory net-
work (ABLSTM), to comprehensively learn discriminative features from
diverse users. Our experimental study based on a real-world dataset col-
lected from Sogou Voice Assistant (https://yy.sogou.com/) show that our
method outperforms (over 1.0–15.5% in terms of F1 measure) alternative
baselines.
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1 Introduction

With the rapid development of technology, the Voice Dialogue Applications
(Siri1, Nina2, Alexa3, etc.) have gained popularity in recent years. Emphasis
plays an important role in conveying speaker’s attitudes and intentions in VDAs.
Meanwhile, emphasis detection also attracts considerable attention in the field
of speech-to-speech translation, emphatic speech synthesis, automatic prosodic
event detection, human-computer interaction [2,18].

Fig. 1. The workflow of our framework.

Although there have amounts of attempts on emphasis detection, fulfilling the
task is still a non-trivial issue. Traditionally, emphasis mainly detected utilizing
acoustics information. Kennedy et al. [12] propose the use of pitch features as
its only acoustic predictor. Ferrer et al. [9] uses filtered spectral and segmental
features to detect emphasis for each syllable in a word. Although some work also
try to utilize both acoustic and textual features [2] for emphatic words detection,
they are mainly done on acted corpora data.

Therefore, there remains two challenges unsolved for emphasis detection in
the specific situation of real-world VDAs: (1) Except speech information, the
speech-to-text information is also provided by VDAs. Can we integrate mul-
tiple modalities (speech and text) to help enhance the performance on infer-
ring emphasis? (2) Distinguished from the traditional speech emphasis recogni-
tion methods based on acted labeled data, the tremendous amount of uncertain
speakers bring in a great diversity of users’ dialects and expression preferences.
Therefore, how to comprehensively learn user-invariant features by strengthening
single modal features to increase the emphasis inferring effectiveness?

1 https://www.apple.com/cn/ios/siri/.
2 https://www.nuance.com/index.html.
3 https://developer.amazon.com/alexa/.

https://www.apple.com/cn/ios/siri/
https://www.nuance.com/index.html
https://developer.amazon.com/alexa/
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To solve this problem, we introduce a novel approach to detect emphasis
in VDAs with extra attention on textual information. Figure 1 illustrates detail
architecture. In particular, first we employ a Multi-path convolutional neural net-
work (MCNN) component which considers the independency nature of features
[21,22], to extract high-level representation of acoustic features (fundamental
frequency (F0), Mel Frequency Cepstral Coefficients (MFCCs), energy, duration
and position of frame (POF) [21]) and high-level textual features individually.
Then, combining both high-level acoustic features and textual features, we train
an emphasis classifier by attending on the textual features with an attention-
based bidirectional long short-term memory network (ABLSTM). Our exper-
imental study based on a 1500 real-world dataset collected from Sogou Voice
Assistant demonstrate that our method outperforms baseline systems (over 1.0–
15.5% in terms of F1 measure). Specifically, we discover that, the textual infor-
mation enhances the performance for 2.6%, while attention mechanism further
enhance the performance for 1.0%. Meanwhile, to demonstrate the adaptability
of our method, we also conduct experiments on a 500 real-world English cor-
pus. Our method easily adapts to utterances of other language and outperforms
baseline systems (over 0.8–14.4% in terms of F1 measure).

The organization of this paper is as follows: Sect. 2 lists related works.
Section 3 presents the methodologies. Section 4 introduces the experiments and
results. Section 5 is the conclusion.

2 Related Work

Emphasis Detection Methods. Previous researches on emphasis detection
have focused on the features and models perspectives: Ladd et al. [15] utilize
fundamental frequency to analysis ‘normal’ and ‘emphatic’ accent peaks. Heldner
et al. [11] and Ferrer et al. [9] uses spectral features to detect emphasis. In
[2], fundamental frequencies, duration, spectral features, lexical features, and
identity features are combined together to get a better performance in emphatic
words detection. Meanwhile, some previous works have been done on modelling
methods. Cernak et al. [3] used a probabilistic amplitude demodulation (PAD)
method to predict word prominence in speech. Do et al. [6] used linear regression
HSMMs method (LR-HSMMs) for preserving word-level emphasis. Ning et al.
[18] propose a multilingual BLSTM model for prosodic event detection. However,
these researches mainly focus on inferring emphasis from acted corpora, few have
been done to address the problem in real-world VDAs.

Multi-media Modeling. Recently, methods in Multi-media Modeling have
shown significant performance improvements. Zhou et al. [22] propose a Multi-
path Generative Neural Network which consider both acoustic and textual fea-
tures. Zhang et al. [21] propose a MCNN model for emphasis detection. Mean-
while, attention mechanism [1] is gaining its popularity. It have been proved to
be effective in learning more attentive features for many areas like sentiment
analysis [5]. Therefore, we suppose that these methods may also be helpful for
multi-modal emphasis detection in VDAs.
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3 Methodology

In this paper, to infer users’ emphasis in VDAs. We propose a novel scheme for
emphasis detection with extra attention on textual information. Specifically, (1)
considering the in-dependency nature in features, we first model the acoustic and
textual features utilizing a Multi-path convolutional neural network (MCNN)
individually. (2) to comprehensively learn discriminative features from diverse
users in VDAs, combining high-level multi-modal features, we train an emphasis
classifier by attending on the textual features with an attention-based bidirec-
tional long short-term memory network (ABLSTM).

3.1 Multi-path Convolutional Neural Network Component

As discussed above, traditionally, to model high-level features for emphasis
analysis, SVM, CRF [19], HSMMs [7], DNNs, CNNs [14] have been adopted.
However, since the different feature has its own characteristics, the traditional
methods which utilize the low-level features like F0, MFCCs, energy, et al. as
input together may not fully consider the independency nature of different fea-
tures. These may limit the performance in emphasis detection while combining
multi-features [21]. In our solution, considering both textual feature and six
kinds of acoustic feature, we employ a multi-path convolutional neural network
(MCNN) component to extract high-level representation from multi-modal fea-
tures respectively to enhance the performance of our proposed approach.

Specifically, for F0, MFCCs and energy, we perform convolution on mod-
elling. We define F, E, M as the high-level features representation for F0, energy,
MFCCs. Let s ∈ R

L×d represents a L-frame sentence. For each frame, it has
d-dimensional features. The convolution involves a filter m ∈ R

k×k, which is
applied to a window w ∈ R

k×k to produce a new feature y ∈ R
L×d. Each

feature yi is produced as [13]:

yi = f(w · m + b) (1)

b respectively denotes bias term and f is nonlinear transformation function. This
filter is applied to each possible window in the sentence s to produce a feature
map:

y = [y1;y2; ...;yn] (2)

For duration, POE feature and textual features, we choose the DNNs to
model their high-level representation which preforms well for these three features
and can make our model more efficient. We define them as D, P and W. We train
all these feature extractors together. Then, all the acoustic features are merged
together to generate A as follows:

A = concat[F,E,M,D,P] (3)

The output hiddens A and W for high-level acoustic and textual features are
then fed to the ABLSTM component for further computation directly.
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Fig. 2. The multi-path convolutional and attention-based bidirectional long short-term
memory neural network (MCNN-ABLSTM)

3.2 Attention-Based BLSTM

Long short-term memory (LSTM) units have been extensively used to learn long
span temporal information. In our proposed framework, we apply recurrent neu-
ral network architecture with bi-directional long short-term memory (BLSTM)
to achieve effective modeling.

Sepecifically, we apply Bidirectional RNN [20] to make full use of speech
sequences in the forward and backward directions. Given an input sequence
x = (x1, . . . ,xT ), T is the length.

−→
h is forward hidden layer, and

←−
h is backward

hidden layer. The iterative process is as follows [8]:
−→
h t = H(W

x
−→
h

xt + W−→
h

−→
h
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h
) (4)

←−
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←−
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←−
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h
) (5)

yt = W−→
h y

−→
h t + W←−

h y

←−
h t + by (6)

y is the outputs sequence and W is the weight matrix for different layers.
bh is the bias vector for hidden state vector and by is the bias vector for output
vector. H is an activation function. For H in conventional RNN models, it has the
limitations of storing past and future information in speech. The Bidirectional
long short-term memory (BLSTM) with a memory cell built inside can overcome
it. The H of BLSTM is as follows [10]:

it = σ(Wxixt + Whiht−1+Wcict−1 + bi) (7)

ft = σ(Wxfxt + Whfxt−1+Wcfct−1 + bf ) (8)

ct = ftct−1 + ittanh(Wxcxt + Whcht−1 + bc) (9)

ot = σ(Wx0xt + Whoht−1+Wcoct + bo) (10)
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ht = ottanh(ct) (11)

In order to take advantage of the textual information, we adopt the attention
mechanism mentioned in [5] and modify the input layer into the BLSTM units.
Let at represents the current high-level acoustic feature input and wt be the
current high-level textual feature input learned from MCNN. We first obtain
the attentive textual feature vt as an weighted average of the high-level textual
feature wt based on the self-selected attention mechanism. Let wt, t ∈ (1, T )
represent the t-th frame feature of textual feature w and fatt(·,at) denote the
attention function conditioned on the current high-level acoustic feature at. The
attention weight αi and attentive textual feature vt is formulated as follows:

ut = fatt(wt,at) (12)

αt =
exp(ut)

∑T
t=1 exp(ut)

(13)

vt = αt · wt (14)

We choose a fully-connected layer with ELU activation as the attention func-
tion, and the attention vector vt is concatenated with the high-level acoustic
feature at as the new input of the BLSTM. Thus the input vector xt becomes
[at,vt]. The output of the final BLSTM unit is then fed into a fully-connected
layer with softmax activation to predict emphasis results. Categorical cross-
entropy loss is used as the objection function.

The motivation of this acoustic-guide Attention-based BLSTM (ABLSTM)
as shown in Fig. 2 with the textual feature is that we use the acoustic feature to
guide the attention weights of the textual feature in order to enforce the model
to self-select which frame feature it should attend on. With this mechanism,
it can help comprehensively learn discriminative features from diverse users in
order to improve the emphasis detection accuracy in VDAs.

4 Experiments

4.1 Corpus and Annotation

Mandarin Corpus. We establish a real-world corpus of voice data from Sogou
Voice Assistant containing 1500 Mandarin utterances recorded by 176 users.
Every utterance is assigned with its corresponding speech-to-text information
provided by Sogou Corporation.

English Corpus. We establish a corpus of voice data containing 500 English
utterances. Every utterance is assigned with its corresponding speech-to-text
information provided by Sogou Corporation.

Data Annotation. The corpus is labeled by three well-trained annotators. The
annotators are asked to label the emphasis by listening to the utterances and
reading corresponding words simultaneously. The words are then classified into
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labels of 0 and 1 indicating normal and emphasized words. Labels are regarded
as emphasis only when three inter-annotator reach an agreement. If they are
controversial or ambiguous about labels, utterance will be labeled as ambiguous
or discarded. Finally, 1500 Mandarin utterances and 500 English utterances are
labeled emphasis. Each of the utterances contains one or more emphatic words.
These emphatic words are located at different positions in sentences. The empha-
sis distributions of these utterances are: emphasis: 27.03%, normal: 72.97%. An
example of the label sentences is shown in Fig. 3.

Fig. 3. An example of emphasis labels in Mandarin and English from the VDAs.

4.2 Features

Acoustic Feature. Previous works indicate that emphasis usually has higher
F0, longer duration and higher energy [4]. Therefore, we use 19-dimensional
acoustic features, including Log F0 (lf0) (1), energy (1), duration (1), Position
of Frame (PoF) (4) and Mel Frequency Cepstral Coefficients (MFCCs) (12)
prosodic features. The used PoF features include the position of the syllables in
the sentence, the position of the frame in syllable and the position of the frame
in sentence [21]. The frame length of voice segments is 25 ms and frame shift is
5 ms. Features are normalized to the mean 0 and the variance 1.

Textual Feature. For textual information in Mandarin Corpus, we first use
Thulac Tool [17] which is an efficient Chinese word segmentation to get words of
an utterance. Then we utilize word2vec to learn word embeddings. Specifically,
we use the whole 31.2 million chinese word corpora collected from the 7.5 mil-
lion utterance from SVAD13 [22] as the training corpora for word2vec. As for
the textual information for English databases, we adopt the publicly available
300-dimensional word2vec vectors, which are trained on 100 billion words from
Google News to represent word vector.

4.3 Experimental Setup

Comparison Methods. We compared the performance of emphasis detection
with some well-known LSTM baseline models for comparison, bi-directional long
short-term memory (BLSTM) [18], convolutional bidirectional long short-term
memory (CNN-BLSTM) [16], Multi-path convolutional bi-directional long short-
term memory neural networks (MCNN-BLSTM) [21]. Our proposed model is
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Table 1. The performance on Mandarin corpus and English corpus with different
comparison methods.

Method Mandarin corpus English corpus

Precision Recall F1-measure Precision Recall F1-measure

BLSTM 0.396 0.453 0.422 0.387 0.639 0.477

CNN-BLSTM 0.493 0.541 0.516 0.524 0.560 0.538

MCNN-BLSTM 0.542 0.595 0.567 0.632 0.595 0.613

MCNN-ABLSTM 0.523 0.643 0.577 0.627 0.616 0.621

Attention-base Multi-path convolutional bi-directional long short-term memory
neural networks (MCNN-ABLSTM).

Metrics. In all the experiments, we evaluate the performance in terms of F1-
measure, Precision, Recall. The datasets are split by train:val:test = 8:1:1.

4.4 Experimental Results

4.4.1 Performance Comparision
To evaluate the effectiveness of our proposed MCNN-ABLSTM, we compare the
performance of emphasis detection with some baseline methods: BLSTM, CNN-
BLSTM, MCNN-BLSTM for both Mandarin corpus and English corpus. Table 1
shows the results of emphasis detection with acoustic information and textual
information.

For the Mandarin corpus from Sogou Voice Assistant, in terms of F1-measure,
the proposed MCNN-ABLSTM outperforms all the baseline methods: +15.5%
compared with BLSTM, +6.1% compared with CNN-LSTM, and +1.0% com-
pared with MCNN-BLSTM. Specifically, (1) to demonstrate the Multi-path solu-
tion of our proposed method, the MCNN-BLSTM also outperforms the BLSTM
(+14.5%) and CNN-BLSTM (+5.1%). This proves the effectiveness of the pro-
posed MCNN component which considers the in-dependency nature of different
features, in modeling the multi-modal high-level features. (2) To demonstrate the
ABLSTM part of our proposed method, comparing MCNN-BLSTM and MCNN-
ABLSTM, although MCNN-BLSTM has a better performance in terms of pre-
cision, MCNN-ABLSTM has a more balanced overall performance, +4.8% in
terms of recall, +1.0% in terms of F1-measure. Therefore, our proposed MCNN-
ABLSTM with acoustic-guide attention on textual feature is a more effective
way for emphasis detection in VDAs.

To demonstrate the comparability and the adaptability of our method, we
also report experimental results on a real-world English corpus from Sogou Cor-
poration. As shown in Table 1, the F1-measure reaches 0.621, showing +14.4%
improvement compared with BLSTM, +8.3% improvement compared with CNN-
BLSTM, +0.9% improvement compared with MCNN-BLSTM, indicating that
our method still shows advantages on utterances of other language.
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Fig. 4. Feature contribution analysis.

Fig. 5. Parameters analysis.

4.4.2 Feature Contribution Analysis
Then we discuss the contributions of acoustic and textual features. The
F1-measure, precision, recall for emphasis detection results for Mandarin
Corpus are shown in Fig. 4. Specifically, for ‘Textual Only’, ‘Acoustic
Only’, ‘Textual+Acoustic’, we utilize MCNN-BLSTM model, and for ‘Tex-
tual+Acoustic+Attention’, we utilize MCNN-ABLSTM model. As in Fig. 4,
the performance of ‘Acoustic Only’ is better than ‘Textual Only’, which
indicates that the acoustic information can contribute more to the empha-
sis detection in the real world VDAs. Moreover, ‘Textual+Acoustic’ which
contains both textual information and acoustic information performs better
than ‘Acoustic Only’ +2.6% in terms of F1-measure. The results validate the
necessity of taking the textual information into consideration. Moreover, ‘Tex-
tual+Acoustic+Attention’ which consider both acoustic feature and textual fea-
ture with our proposed MCNN-ABLSTM has the best performance. Compared
with ‘T+A’, ‘T+A+attention’ +1.0% in terms of F1-measure and +4.8% in
terms of recall. These convince that our proposed attention mechanism can be
more effective in modeling multi-modal features.
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4.4.3 Parameter Sensitivity Analysis
We show how changes of parameters in MCNN-ABLSTM affect the performance
of emphasis detection in Mandarin Corpus.

Multi-path Convolutional Layers Analysis. We first test the parameter
sensitivity about Multi-path Convolutional Layers. As shown in Fig. 5(a), the
performance reached the highest performance when the layer of Multi-path Con-
volutional is 4. With the increase of the number of the layers, the performance
decreased for over-fitting. So we choose the four convolutional layers as the exper-
imental setup.

Training Data Scalability Analysis. We further test the parameter sensitiv-
ity about training data size of Mandarin Corpus. As shown in Fig. 5(b), with the
increase of the amount of training data, F1-score performance with rapid ascen-
sion, but when the size of training data over 1500, the performance reaches con-
vergence. Considering time efficiency, we choose 1500 as our experiment dataset.

5 Conclusions

In this paper, we propose a novel scheme for emphasis detection with extra atten-
tion on textual information. Specifically, we first model the acoustic features
and textual features utilizing a MCNN component individually. Then combin-
ing high-level multi-modal features, we train an attention-based emphasis clas-
sifier ABLSTM, to comprehensively learn discriminative features from diverse
users. Experiments based on real-world Mandarin and English corpus show the
effectiveness of our methods. Based on our work, VDAs can better understand
speakers’ attitudes and intentions which contributes to more humanized intelli-
gent service.
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