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Abstract

Online Social Networks (OSNs) evolve through two perva-
sive behaviors: follow and unfollow, which respectively sig-
nify relationship creation and relationship dissolution. Re-
searches on social network evolution mainly focus on the
follow behavior, while the unfollow behavior has largely
been ignored. Mining unfollow behavior is challenging be-
cause user’s decision on unfollow is not only affected by the
simple combination of user’s attributes like informativeness
and reciprocity, but also affected by the complex interaction
among them. Meanwhile, prior datasets seldom contain suf-
ficient records for inferring such complex interaction. To ad-
dress these issues, we first construct a large-scale real-world
Weibo1 dataset, which records detailed post content and rela-
tionship dynamics of 1.8 million Chinese users. Next, we de-
fine user’s attributes as two categories: spatial attributes (e.g.,
social role of user) and temporal attributes (e.g., post content
of user). Leveraging the constructed dataset, we systemati-
cally study how the interaction effects between user’s spatial
and temporal attributes contribute to the unfollow behavior.
Afterwards, we propose a novel unified model with heteroge-
neous information (UMHI) for unfollow prediction. Specifi-
cally, our UMHI model: 1) captures user’s spatial attributes
through social network structure; 2) infers user’s temporal
attributes through user-posted content and unfollow history;
and 3) models the interaction between spatial and temporal at-
tributes by the nonlinear MLP layers. Comprehensive evalua-
tions on the constructed dataset demonstrate that the proposed
UMHI model outperforms baseline methods by 16.44% on
average in terms of precision. In addition, factor analyses ver-
ify that both spatial attributes and temporal attributes are es-
sential for mining unfollow behavior.

1 Introduction
The popularization of the Internet greatly facilitates the de-
velopment of Online Social Networks (OSNs). Statistics2

show that more than 3 billion people around the world now
use OSNs each month. The fast development of OSNs is
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1https://www.weibo.com/
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Figure 1: An example of unfollow behavior in online social
network: User1 posted too much spam messages, resulting
the unfollow behaviors of his/her followers.

tightly coupled with the evolution of online social relation-
ships. There are two basic actions for users to manage their
social relationships: follow (relationship creation) and unfol-
low (relationship dissolution), of which an example is shown
in Figure 1. Previous research efforts paid much attention
to the follow behavior (Liben-Nowell and Kleinberg 2007;
Bliss et al. 2014; Quercia et al. 2012a), while unfollow be-
havior mining has largely been ignored. Statistics in a real-
world Weibo dataset show that almost 40% of users unfol-
low others at least once a month. The frequent occurrence of
unfollow behavior leads to an interesting question: why peo-
ple unfollow others? Taking a step forward, can we predict
the unfollow behavior in OSNs?

Previous research efforts have shown the rationality of an-
alyzing and predicting unfollow behavior. They mainly fo-
cus on mining unfollow behavior through user-posted con-
tent and social network structures, and have revealed sev-
eral attributes that are closely related to the unfollow be-
havior, such as the informativeness of the followee and the
reciprocity of relationships. Leveraging the found attributes,
these methods predict unfollow behavior by defining hand-
crafted features (Maity et al. 2018; Kwak et al. 2012;
Xu et al. 2013). However, merely defining handcrafted fea-
tures from unfollow-related attributes cannot generalize well
to large-scale setting, because user’s decision on unfollow is
not only affected by the simple combination of user’s at-
tributes, but also by the complex interaction effects among
them. Take the community and post content of users as
an example, user’s personal habits shown in post content
would influence the community of user, while the commu-
nity would also affect user’s preference on post content;



thus the intertwined nature of community and post con-
tent would result in a highly complicated unfollow decision
mechanism. Meanwhile, modeling such interaction effects
needs abundant records of online social networks, while
prior datasets seldom satisfy such requirement.

To address these issues, in this work, we first construct
a large-scale benchmark dataset on Sina Weibo, which con-
tains 1.8 million Chinese users, 400 million social relation-
ships and 10 million records of unfollow. We record the
timeline, content, and upvotes of each user’s microblogs
and track the unfollow actions of these users in a month.
Then, inspired by previous researches, we define user’s at-
tributes as two categories: spatial attributes (e.g., social role
of user) and temporal attributes (e.g., post content of user).
Based on the constructed dataset, we systematically study
how the interaction between spatial and temporal attributes
contribute to the unfollow behavior and conduct exhaustive
data observations. Next, for the unfollow prediction task,
we propose a novel unified model with heterogeneous in-
formation (UMHI) to learn the highly complex interaction.
The main idea of UMHI is to model the user’s spatial at-
tributes through social network structure and user’s tempo-
ral attributes through user-posted content and short-term un-
follow history (a user’s unfollowed-people list). First, in-
formation of social network structure is extracted by net-
work embedding; Second, we adopt hierarchical attention
network (HAN) (Yang et al. 2016b) to learn representa-
tions from user-posted content. Third, the matrix factoriza-
tion (MF) based collaborative filtering (Koren et al. 2009) is
employed to reduce user’s short-term unfollow history into
low dimensional feature vectors. Finally, a unified hetero-
geneous information fusion network is trained to model the
interaction between spatial and temporal attributes. Figure 2
summarizes the workflow of our framework.

Experiments demonstrate that our model outperforms the
baseline methods by 16.44% on average in terms of preci-
sion. In addition, factor analyses show that both spatial and
temporal attributes are essential for mining unfollow behav-
ior. To conclude, we summarize our contributions as fol-
lows:

• We construct a real-world benchmark dataset on Sina
Weibo with 1.8 million Chinese users and 400 million so-
cial relationships. It records user’s post content and rela-
tionship dynamics for a whole month. Such large-scale
dataset is not only useful for unfollow prediction, but
also beneficial for further research like depression detec-
tion and rumor detection. Dataset is publicly available at
https://github.com/wuhaozhe/Unfollow-Prediction.

• We systematically study how the spatial and temporal
attributes contribute to the unfollow behavior, unveiling
the interaction effects between these two categories of at-
tributes.

• We propose a novel UMHI model, which predicts unfol-
low behavior by learning spatial and temporal attributes
through user’s footprint on OSN. The proposed method
outperforms baseline methods by a large margin.

2 Related Work
Previous researches on social network evolution mainly fo-
cus on the follow behavior (link prediction and friend recom-
mendation), while the unfollow behavior has received less
scrutiny.

For mining follow actions, several researches focus on
predicting relationship from social network structures (Tang
et al. 2015; Perozzi et al. 2014; Grover and Leskovec 2016).
Perozzi et al. proposed Deepwalk algorithm (Perozzi et al.
2014) to represent the network structure as low dimensional
embeddings through random walks on social networks, then
the similarity between embeddings reflects the possibility of
establishing relations. The node2vec algorithm (Grover and
Leskovec 2016) extends the depth first random walk strategy
into a biased random walk procedure, making the learned
representations scalable. The LINE algorithm (Tang et al.
2015) embeds node into low dimensional representations by
optimizing the first order and second order proximity. All of
these approaches only capture spatial factors, while unfol-
low behavior is caused by intricate interactions of spatial and
temporal factors. Therefore the aforementioned algorithms
all suffer from inferior performance in terms of unfollow
prediction.

Compared with these link prediction methods, researches
on unfollow behavior mostly resort to rule based meth-
ods. Kwak et al. firstly researched on the unfollow dynam-
ics in Twitter, they found some unfollow factors, includ-
ing informativeness, reciprocity and relationship stabiliza-
tion (Kwak et al. 2011). Later, they built a logistic regression
model based on structure properties and behavioral proper-
ties (Kwak et al. 2012). The same group then adopted actor-
oriented model (SIENA) to examine the impacts of reci-
procity, status, embeddedness, homophily, and informative-
ness on tie dissolution (Xu et al. 2013). Kivran-Swaine et
al. explored how network structures alone influence unfol-
low behavior (Kivran-Swaine et al. 2011). Quercia et al. re-
searched on whether user’s demographics such as age, gen-
der will influence unfollow behavior in facebook (Quercia
et al. 2012b). Maity et al. analyzed the content of the posts
made by the Twitter users who lose followers consistently
and extracted various behavioral features from followee’s
post content to make prediction. (Maity et al. 2018). How-
ever, these rule-based methods can hardly represent the in-
teraction between the spatial and temporal attributes, there-
fore can’t generalize well to large-scale settings.

3 Problem Formulation
The problem setting of unfollow prediction is to predict a
user’s future unfollow behavior from raw online social net-
works (OSNs) data. OSNs contain several attributes that are
predictive for unfollow behavior, we define them as two cat-
egories: spatial attributes and temporal attributes. Formally:
• Spatial Attributes: user’s attributes that remain un-

changed in time interval [tstart, tend] (e.g., user’s social
role).

• Temporal Attributes: user’s attributes that dynamically
change in time interval [tstart, tend] (e.g., user-posted
content).
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Figure 2: The workflow of UHMI: We predict unfollow behavior by fusing two kinds of information: (1) Spatial attributes, here
we utilize user-located network structure to represent such attributes. (2) Temporal attributes, we incorporate user’s temporal
post content and unfollow history as the input to represent such attributes. The interaction effects bewteen spatial and temporal
attributes is modeled through the fusion stage in UMHI. Details of hierarchical attention network is shown in Figure 4.

Given a set of users V , we use a binary matrixR ∈ R|V |×|V |
to denote the link dynamics between users in time interval
[tstart, tend]. Specifically, each entry rij denotes whether
user i has unfollowed user j in [tstart, tend], which is de-
fined as:

rij =

{
1, if user i unfollowed user j in [tstart, tend];
0, otherwise.

(1)
To conduct training-test scheme, given test edges Etest,

we mask Etest from binary matrix R. Specifically, for any
rij ∈ Etest, we enforce rij = 0 to get the training binary
matrix Rtrain = R\Etest, here we call matrix Rtrain to be
the unfollow history matrix, ri· to be the unfollow history of
user i, and r·j to be the unfollowed history of user j.

Problem. The target of unfollow prediction is to predict
rij ∈ Etest. We incorporate social network structure infor-
mation ni,nj as spatial attributes, incorporate posted con-
tent mi,mj and unfollow history ri·, r·j as temporal at-
tributes. Then, our objective is to learn a function yij =
f(ni,nj ,mi,mj , ri·, r·j), which estimates the probability
that user i would unfollow user j.

4 Dataset Observation
In this section, we conduct exhaustive data observations to
analyze how spatial attributes and temporal attributes inter-
act with each other. In order to visualize the observation
results, we define several statistics that respectively repre-
sent spatial attributes and temporal attributes. We take user’s
social role as an example of spatial attributes. Specifically,
following the prior work of Yang (Yang et al. 2016a), we
divide users into three groups: 5% of users with the highest
PageRank score (Page et al. 1999) are considered to be the

opinion leader (OpnLdr); 5% of users with the lowest Burts
Constrain score (Burt 2017) are considered to be the bridges
between disconnected communities in social network, a.k.a.,
the structure hole (StrHole); and the rest of users are consid-
ered to be ordinary users (OrdUsr). Then for the temporal
attributes, we define the following two attributes:

• Similarity: the tf-idf similarity between follower and fol-
lowees’ post content within a month.

• Exposure: the number of microblogs posted by the fol-
lowee within a month.

Before analyzing the results of data observations, we first
elaborate the details of dataset construction. We build a
large-scale benchmark dataset on Sina Weibo, which con-
tains 1.8 million Chinese users and 400 million social re-
lationships. We record each user’s microblog post content
and relationship dynamics from September 28, 2012 to Oc-
tober 29, 2012. Each post is recorded with its time, content
and upvotes. During the month we observe, we found that
10,705,319 (2.53%) edges have been broken at least once,
and 714,945 (40.00%) users have unfollowed others at least
once, verifying that unfollow is a pervasive behavior.

Although the unfollow behavior is pervasive, the ratio be-
tween unfollow relationships and hold relationships is still
unbalanced (2.53% in our dataset). Therefore, we build a
balanced sub-dataset Etest for fair data observation and fur-
ther training-test scheme. Table 1 shows the composition of
Etest, here we filter out the edges in which either follower
or followee post no microblog content.

To measure how the interaction effects between spatial
and temporal attributes affect user’s decision on unfollow,
we define metric rou(c) (ratio of unfollow under condition
c) to be the ratio bewteen the number of unfollow edges and



Table 1: Sum of edges in the Etest among different so-
cial roles and relations statuses. OrdUsr, OpnLdr and Str-
Hole are the shorthands of ordinary user, opinion leader and
structure hole, meaning that the followee of the edge is Or-
dUsr/OpnLdr/StrHole.

Social role OrdUsr OpnLdr StrHole Sum

hold 1887 2551 1364 5802
unfollow 2391 2539 1860 6790

Sum 4287 5090 3224 12592
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Figure 3: The results of exploratory analysis, (a) (b) respec-
tively plots the distribution of rou under the interaction be-
tween similarity / exposure and social role.

the number of all edges. Formally:

rou(c) =
Nun(c)

Nho(c) +Nun(c)
, (2)

where Nun(c) is the number of edges that break relation-
ships under condition c within the observed month, Nho(c)
is the number of edges that hold relationships. Edges with
higher rou(c) are more likely to break, while with lower
rou(c) are more stable. In the following analysis, we lever-
age Etest to estimate the distribution of rou(c) under dif-
ferent combinations of user’s spatial attributes and temporal
attributes.

Interaction between similarity and social role. Similar-
ity reveals user’s homogeneity in short-term post content.
Two users with higher homogeneity are more likely to have

stable relationship. Figure 3a plots the relationship between
similarity and rou under different social roles. We observe
that as similarity increases, the rou quickly decreases to the
saturation point. Figure 3a also shows that the interaction ef-
fects bewteen social role and similarity is significant: opin-
ion leader is most sensitive to similarity, since it varies the
most as similarity increases. On the other hand, for structure
holes, similarity seems to be a weak factor.

Interaction between exposure and social role. Exposure
evaluates the activeness of followee in recent time. From
Figure 3b, we observe that with the increase of exposure,
rou shows different tendency under different social roles.
The rou of opinion leaders is naturally lower than that of
ordinary users and structure holes. Meanwhile, the rou of
ordinary users and structure holes fluctuates with the in-
crease of exposure, while the rou of opinion leaders mono-
tonically decreases. Such phenomenon has a simple inter-
pretation: followers are concerned with the messages from
opinion leaders, and would not curtly break up relationships
with them.

Summary. We reveal that the spatial and temporal at-
tributes interplay with each other and result in an intricate
mechanism of unfollow behavior. Therefore, for unfollow
prediction, it is necessary to employ the nonlinearity of neu-
ral network to model such interactions. In next section we
will introduce how the UMHI model leverages neural net-
work to extract discriminative features for unfollow predic-
tion.

5 Proposed Model
Based on the exploratory analysis in Section 4, we propose a
novel UMHI model which incorporates heterogeneous infor-
mation to predict the unfollow behavior. Our model simul-
taneously takes the spatial attributes and temporal attributes
as input. More specifically, (1) we capture spatial attributes
through social network structure, and utilize network em-
bedding to compress the graph structured data into feature
vectors. (2) We infer user’s temporal attributes from user-
posted content and unfollow history, the hierarchical atten-
tion network (HAN) and matrix factorization (MF) are re-
spectively leveraged to learn the feature vectors from post
content and unfollow history. (3) We employ the nonlinear-
ity of MLP layers to model the interaction effects between
spatial attributes and temporal attributes. The overall archi-
tecture of UMHI is presented in Figure 2.

The remainder of this section is organized to elaborate
each component of UMHI framework.

5.1 Network Structure Encodes
The user-located social network structure is closely related
to the unfollow behavior. As revealed in Section 4, users
with higher pagerank score have lower probability to be un-
followed. Except for the social role which affects followee’s
decision on unfollow, prior work by Quericia et al. (2012b)
argues that common friends between two users also greatly
affects the stability of relationship.

To comprehensively encode network structure into low di-
mensional feature vectors, we leverage the network embed-
ding method. Different network embedding methods have
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Figure 4: An illustration of hierarchical attention network.
The first layer of HAN incorporates the word embeddings
of each post as input, then outputs a dimension fixed post
content represention, the second layer of HAN incorporates
post content representations of all posts as input, and aggre-
gates representations into a dimension fixed feature vector.

different capacities for encoding different kinds of structure
information (Dalmia et al. 2018). Because of different opti-
mization strategies, LINE algorithm has better capacity on
capturing local information, while Deepwalk and Node2vec
prefer to encode global information.

For unfollow prediction, experiment results in Section 6
demonstrate that local information plays a more important
role than global. Therefore, we employ the LINE algo-
rithm to represent social network structure. LINE has two
different objectives: first-order proximity and second-order
proximity. The first-order proximity refers to the local pair-
wise proximity between vertices in the network, while the
second-order proximity is the similarity in the neighborhood
network structures between two nodes. We denote LINE
with first-order proximity as LINE1, and LINE with second-
order proximity as LINE2. The UMHI framework incorpo-
rates both LINE1 and LINE2 as input, here we respectively
denote the node embeddings of follower i and followee j as
ni and nj .

5.2 Post Content Encodes
Users’ post content reflects their temporal preferences. By
observing the post content of follower and followee, we
may guess whether the follower losts interest in the fol-
lowee’s posts at present. Since that both the words in each
post and all posts of one user are serialized sequences, we
employ the hierarchical attention network (HAN) to extract
the discriminative features. The hierarchical attention net-
work, as shown in Figure 4, contains two bidirectional atten-
tion LSTM layers. The first LSTM layer encodes each post
into dimension fixed representation, the second layer aggre-
gates representations from all posts into a dimension fixed
feature vector. Finally the attention mechanism (Bahdanau
et al. 2014) assign different weights to different words and
posts.

More specifically, we firstly embed each word of post con-
tent into word embeddings wij ∈ RN (i is microblog ID, j
is word ID). For a microblog with T words, the bidirectional
attention LSTM f1 takes wi1...wiT as input, and outputs the
sentence representation si, formally as:

si = f1(wi1...wiT ). (3)
After obtaining representation si of each post, for one

user with L microblogs, the second LSTM layer f2 aggre-
gates the learned representation into a dimension fixed fea-
ture vector m, formally:

m = f2(s1...sL). (4)
The overall UMHI framework simultaneously extracts the

post content feature vector of follower i and followee j, we
respectively denote the two feature vectors as mi and mj .

5.3 Unfollow History Matrix Factorization
Unfollow history records user’s unfollowed-people list in re-
cent time. Users with similar unfollow history show homo-
geneity in unfollow behavior. Specifically, if two users un-
followed similar followees recently, they may make similar
unfollow decisions in the future. However, the unfollow be-
havior is sparse, statistics in our constructed dataset show
that each user would only unfollow 6 users on average in
a month. Therefore, it is hard to directly predict unfollow
action by a user’s unfollowed-people list.

Inspired by the matrix factorization (MF) based collab-
orative filtering algorithm, we construct a unfollow history
matrix Rtrain as defined in Section 3. By matrix factoriza-
tion we compress the unfollow history of follower i to latent
vector pi, and also map the unfollowed history of followee
j to latent vector qj . The dot product of pi and qj produces
r̂ij , which estimates the value of rij in Rtrain. Formally:

r̂ij = piq
T
j , (5)

where pi and qj are learned by optimizing the following reg-
ularized squared error:

min
p∗,q∗

∑
〈i,j〉∈|V |×|V |

(rij − piqTj )2 + λ(||pi||2 + ||qj ||2). (6)

The regularized squared error is minimized by stochas-
tic gradient method (SGD) without negative sampling. The
UHMI framework then incorporates both pi and qj as input.
Experiment results demonstrate that feature vectors pi and
qj are effective for the final prediction.



5.4 Output and Objective Function
Until now, given follower i and followee j, we’ve obtained
network embeddings ni,nj , post content feature vectors
mi,mj , and unfollow history feature vectors pi, qj . Among
which ni and nj are spatial attributes, while mi,mj , pi and
qj are temporal attributes. To model the complicated interac-
tions between spatial attributes and temporal attributes, we
employ MLP layers to incorporate the unified representation
as input. The nonlinearity of MLP layers can adequately rep-
resent the interaction mechanism between spatial attributes
and temporal attributes. Finally, the output layer estimates
the unfollow probability yij between follower i and followee
j. Formally:

d = ni ⊕ nj ⊕mi ⊕mj ⊕ pi ⊕ qj , (7)

yij = Sigmoid(MLP(d)). (8)

The objective function to be minimized is defined as:

O =
∑

〈i,j〉∈|V |×|V |

(rij log(yij)+(1−rij) log(1−yij)), (9)

where rij is the element of Rtrain. The objective function
is a format of cross-entrophy. Since positive instances and
negative instances are unbalanced, we sample equal number
of positive and negative instances in each mini-batch.

6 Experiments
In this section, we firstly introduce dataset construction,
evaluation metrics and UMHI implementation details, then
we demonstrate the effectiveness of UMHI framework
through comprehensive experiments. We show quantitative
results on unfollow prediction, and respectively analyze spa-
tial attributes, temporal attributes and the interaction effects
through experimental results. Finally, we confirm the robust-
ness of UMHI framework under different train-test split.

6.1 Dataset
Since prior researches did not publish their datasets, we only
conduct experiments on the dataset we built. Section 4 has
introduced how we construct the sub datasetEtest. To evalu-
ate the model performance and prevent information leakage,
we conduct five-fold cross validation on Etest. Specifically,
we randomly holdout 20% ofEtest for test, and combine the
remaining data with Rtrain = R\Etest for training.

6.2 Metrics
We adopt the following three popular metrics to evaluate the
performance of unfollow prediction:

• Precision: It measures the probability that a predicted
positive instance would be the true positive.

• Recall: It measures the probability that the true positive
would be predicted to be positive instance.

• AUC: It measures the probability that a classifier will rank
a randomly chosen positive instance higher than a ran-
domly chosen negative one.

6.3 Implementation Details
We first use jieba 3 to cut microblog posts into separated
words, use gensim 4’s word2vec model to embed words into
embeddings, and implement our UMHI model with Keras.

There are two stages for training our UMHI framework.
In the first stage, we pretrain each component of UMHI, and
in the second stage, we combine the three components of
UMHI and fine tune the fusion MLP layer.

Stage I: Pretrain of Each Component. During the pre-
train stage, we respectively pretrain LINE, HAN, and Matrix
Factorization. We set the embedding size of LINE to 100,
and train LINE for 100 epochs. When pretraining HAN, we
set the size of LSTM cell to 100 and train for 10 epochs. The
network is optimized by the adam optimizer (Kingma and
Ba 2014), with the learning rate 0.001, and β1 = 0.1, β2 =
0.001. We optimize Matrix Factorization with latent size of
64, learning rate of 0.01, and 100 epochs.

Stage II: Global Fine-Tuning. In global fine-tuning
stage, we fix the parameters of LINE, HAN and Matrix Fac-
torization, and train the MLP layers with adam optimizer for
10 epochs, the learning rate is set to 0.001. We choose the
performance of models when the precision, recall and AUC
of test set achieves biggest value during training.

6.4 Comparison Methods
To justify the effectiveness of the proposed model, we com-
pare the performance of our model with two kinds of base-
lines. Firstly, we compare UMHI with prior unfollow pre-
diction methods. Prior unfollow prediction methods usually
extract rule based features, and conduct training-test scheme
on dataset with limited size, therefore showing inferior per-
formance in our large-scale real-world setting. Secondly, we
compare LINE with other network embedding methods so as
to verify that local structure information plays an more im-
portant role than global information for unfollow prediction.
The compared methods are listed as follows:
• Doc2vec & Action Features+LR (DA + LR). Refer-

ring to Maity’s method (Maity et al. 2018), we extract
Doc2vec features and action features, then predict edge
status by logistic regression.

• Structural & Action Features + LR (SA + LR). Refer-
ring to Kwak’s method (Kwak et al. 2012), we extract
structural features and action features of users, then pre-
dict edge status by logistic regression.

• Deepwalk. Deepwalk (Perozzi et al. 2014) is a network
embedding method, which leverages truncated random
walks to obtain the structural information of each vertex.

• Node2vec. Node2vec (Grover and Leskovec 2016) is a
network embedding method which designs a biased ran-
dom walk procedure. In experiment, we use grid search to
choose random walk strategies with the best performance.

• The Proposed Method. To demonstrate the effectiveness
of different parts in UMHI model, we assemble LINE1,
LINE2, HAN and matrix factorization (MF) into different
combinations and compare their performance.
3https://github.com/fxsjy/jieba
4https://radimrehurek.com/gensim/



6.5 Experimental Results

Table 2: Results of unfollow prediction

Method Precision Recall AUC

DA + LR 0.6292 0.5786 0.6840
SA + LR 0.6348 0.5270 0.6932
Deepwalk 0.6281 0.8123 0.6755
Node2vec 0.6288 0.8114 0.6707

LINE1 0.6316 0.7893 0.6845
LINE2 0.6413 0.7553 0.6924
LINE1 + LINE2 0.6458 0.7561 0.7059
HAN 0.6766 0.8292 0.7441
MF 0.7701 0.8686 0.8136
LINE1 + LINE2 + HAN 0.7034 0.8516 0.7718
UMHI 0.7868 0.8131 0.8673

Table 2 displays the performance across different models,
from this table, we have the following analysis.

Overall Performance. To verify the validness of interac-
tion effects between spatial and temporal attributes, we make
the following comparisons, as shown in Figure 5a. Firstly,
for the three methods (DA + LR, SA + LR, and LINE1 +
LINE2 + HAN) that take same sources of input, DA + LR
and SA + LR are two handcrafted methods that can hardly
represent interaction effects, while LINE1 + LINE2 + HAN
can represent highly nonlinear interaction mechanism. Ex-
periment results show that LINE1 + LINE2 + HAN outper-
forms DA + LR by 7.42% and outperforms SA + LR by
6.86% in terms of precision, verifying that the interaction
effects are powerful.

Meanwhile, from the comparison among LINE1 +
LINE2, HAN, and LINE1 + LINE2 + HAN, we can observe
that LINE1 + LINE2 + HAN significantly outperforms the
first two models, confirming the effectiveness of interaction.
Additionally, the comparison between LINE1 + LINE2 +
HAN and UMHI demonstrate that feeding predictive unfol-
low history information would further boost prediction per-
formance. Also, we notice that UMHI compromises on the
recall value, that’s because unfollow is a sparse behavior and
UMHI tends to be conservative.

Spatial Attributes Comparison. Compared with Deep-
walk and Node2vec, we observe that LINE1 + LINE2
achieves an improvement of 1.73% in terms of precision.
Such improvement verifies that local structure is more im-
portant than global structure under the unfollow prediction
setting. Meanwhile, we discover that LINE2 is notably better
than LINE1 for unfollow prediction. This is because LINE1
only considers the relationship between two nodes, while
LINE2 considers the common neighbors between the two
nodes. Therefore it reveals that the shared environment of
two users can reflect the strength of the relationship more
accurately than the relationship itself.

Temporal Attributes Comparison. We compare the two
temporal attributes: unfollow history and post content. Ex-
periment results show that MF performs 9.35% better than
HAN in terms of precision, therefore unfollow history con-
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Figure 5: Experimental Results

tributes significantly more than the post content.
Robustness Analysis. To verify the robustness of UMHI

framework, we change the proportion of training set and test
set and redo the experiments. Results in Figure 5b show that
the model is effective under limited training data size. Even
with small size of training set (10%-30%), our model can
still have an acceptable and steady performance.

7 Conclusion
In this work, we constructed a large-scale social network
dataset for unfollow behavior mining. Our dataset contains
1.8 million Chinese users and records relation dynamics of
these users in a month. Based on the constructed dataset,
we conducted extensive analyses on how users’ spatial at-
tributes and temporal attributes affect their decisions on
follow, and revealed the interaction effects between these
two categories of attributes. Then, we proposed the UMHI
framework to learn users’ spatial attributes and temporal at-
tributes through their footprints in online social networks.
The proposed framework outperforms baseline methods by
a large margin, and the detailed factor analyses show that
each component of UMHI is effective.

For future researches, the constructed dataset still con-
tains ample social dynamics that deserve further exploring.
During the recorded month, some followers have launched a
burst of unfollow behaviors, and some relationships have ex-
perienced several status alterations, detecting such anoma-
lies in online social networks is beneficial for some down-
stream tasks like depression detection and rumor detection.
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