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Abstract

In intelligent speech interaction, automatic speech
emotion recognition (SER) plays an important role
in understanding user intention. While sentimen-
tal speech has different speaker characteristics but
similar acoustic attributes, one vital challenge in
SER is how to learn robust and discriminative rep-
resentations for emotion inferring. In this paper,
inspired by human emotion perception, we propose
a novel representation learning component (RLC)
for SER system, which is constructed with Multi-
head Self-attention and Global Context-aware At-
tention Long Short-Term Memory Recurrent Neu-
tral Network (GCA-LSTM). With the ability of
Multi-head Self-attention mechanism in modeling
the element-wise correlative dependencies, RLC
can exploit the common patterns of sentimental
speech features to enhance emotion-salient infor-
mation importing in representation learning. By
employing GCA-LSTM, RLC can selectively fo-
cus on emotion-salient factors with the considera-
tion of entire utterance context, and gradually pro-
duce discriminative representation for emotion in-
ferring. Experiments on public emotional bench-
mark database IEMOCAP and a tremendous realis-
tic interaction database demonstrate the outperfor-
mance of the proposed SER framework, with 6.6%
to 26.7% relative improvement on unweighted ac-
curacy compared to state-of-the-art techniques.

1 Introduction
Human speech is highly expressive, people in communication
are willing to use emotions, intonations and styles to convey
the underlying intent of messages. For intelligent speech in-
teraction systems, recognizing such paralinguistic informa-
tion, especially the emotion, can enhance the understand-
ing of user intention and improve user experience. Speech
emotion recognition (SER), aiming to detect emotions from
speech, is thus becoming an increasing interest in the human-
computer interaction research field.
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In spoken human-computer interaction, the input sentimen-
tal speech may have different speaker characteristics while
sharing similar acoustic attributes. Therefore, one vital chal-
lenge in SER is how to learn robust and discriminative rep-
resentations from speech [Strapparava and Mihalcea, 2008].
Traditionally, a long statistical feature vector produced by a
series of statistical aggregation functions (such as mean, max,
variance, etc) on frame-level Low-Level Descriptors (LLDs)
extracted from speech is used as the utterance-level represen-
tation [Schuller et al., 2017]. The statistical feature vector
can roughly describe the temporal variations and contours of
LLDs, which are assumed to be highly related to speech emo-
tion. The learned inference model, such as Deep Neural Net-
work (DNN) [Stuhlsatz et al., 2011], is then applied to infer
emotion from the produced statistical vector.

With the strong ability in informative feature extraction and
temporal aggregation, automatic feature learning algorithm
on frame-level LLDs is also proposed, such as Convolutional
Neural Networks (CNNs) [Poria et al., 2016], Recurrent Neu-
ral Networks (RNNs) [Lee and Tashev, 2015] and its memory
enhanced Long Short-Term Memory (LSTM) variants [Poria
et al., 2017], and has achieved significant improvement.

However, limitations still exist in these state-of-the-art ap-
proaches: the lack of attention ability and underutilization of
contextual information. In human speech emotion perception,
as reported in [Schirmer and Adolphs, 2017], incorporating
context from entire speech is routine, efficient and somehow
automatic, and attention-capturing vocalizations can produce
greater activation to cortex than neutral vocalizations. This
mechanism indicates the importance of introducing attention
ability in developing SER systems. The challenge lies in two
aspects while human perception is mostly based on word-
level vocalizations, one is how to generate informative fea-
tures with suitable resolution for emotion perception, and the
other one is how to generate representation with selective at-
tention under the understanding of the entire utterance.

In this paper, to address above challenges, we propose the
combination use of Multi-head Self-attention [Vaswani et al.,
2017] and Global Context-aware Attention Long Short-Term
Memory recurrent neutral network (GCA-LSTM) [Liu et al.,
2017] to construct a novel Representation Learning Compo-
nent (RLC), aiming to learn robust and discriminative repre-
sentations from speech for emotion inferring.

Developed from self-attention mechanism, Multi-head



Figure 1: Overview of the proposed speech emotion recognition framework. Red recurrences represent the Multi-head Self-attention blocks.

Self-attention inherits the strong ability in modeling the
element-wise correlative dependencies of input sequence, and
can further jointly attend information from different repre-
sentation subspaces to improve the modeling performance.
By employing Multi-head Self-attention, RLC can model the
common patterns of sentimental speech features and the rel-
ative dependencies between vocalizations, to focus on the
attention-capturing parts of speech and enhance emotion-
relevant information importing in feature learning.

Developed from LSTM network, GCA-LSTM inherits the
ability to generate utterance-level representation from speech
with arbitrary length while considering the context informa-
tion. Furthermore, the additional global context memory is
applied to alleviate the weakness in utilizing the utterance-
level global contextual information of LSTM network. In
GCA-LSTM, the global context information is fed to the net-
work to compute informativeness scores of each step’s input,
and accordingly adjust the attention weights for them. For
the input with higher informativeness score to the sentimen-
tal representation, the network learns more from it; on the
contrary, the network blocks it. By employing GCA-LSTM,
RLC can selectively focus on emotion-salient factors with the
consideration of entire utterance context, and gradually pro-
duce discriminative representation for emotion inferring.

As depicted in Fig.1, in inference, LLDs are extracted
from speech signal as the input acoustic features. Residual
convolutional layers with Multi-head Self-attention are em-
ployed to extract emotion-salient features, and merge seman-
tically similar hidden outputs to produce suprasegmental fea-
tures with lower temporal resolution. The GCA-LSTM block
is employed to produce utterance-level representation from
suprasegmental features, which consists of two LSTM layers
and one global context memory embodying the global contex-
tual representation. For each input, the first LSTM layer en-
codes the input sequence and then initializes the global con-
text memory. Then the global context is fed to calculate the
relevance scores of inputs, and help the model to selectively
focus on the informative factors in the second LSTM layer
to produce the attention representation. The learned attention
representation is further fed to refine the global context mem-
ory. Such iterative operation is repeated for several times to
progressively produce robust and discriminative acoustic rep-
resentation of speech, embedded in the global context mem-
ory. The proposed framework can also benefit from multi-
modal inputs. For auxiliary transcribed text, one LSTM layer
is employed to encode input sequence into utterance-level

representation. The acoustic representation and textual rep-
resentation are then fed to classifier for inferring emotion.

The proposed framework is evaluated on two different
databases comparing to state-of-the-art techniques: Interac-
tive Emotional Dyadic Motion Capture database (IEMOCAP)
[Busso et al., 2008] and a tremendous real scene interaction
database (RID). The experimental results demonstrate the su-
perior performance of the proposed framework, achieving
14.3% relative improvement (from 60.7% to 69.4% on un-
weighted accuracy) on IEMOCAP with acoustic input only,
and 6.6% relative improvement (from 74.3% to 79.2%) us-
ing both acoustic and lexical features, and 26.7% relative im-
provement (from 71.2% to 90.2%) on RID with acoustic input
only. The main contributions are summarized as follows.
• A novel representation learning component. Con-

structed with Multi-head Self-attention and GCA-
LSTM, the proposed RLC inherits the feature learning
ability of conventional CNNs, meanwhile promotes its
attention ability in utilizing emotion-salient factors of
speech to produce discriminative presentation.
• Superior-performance in speech emotion recogni-

tion. The experimental results demonstrate the pro-
posed RLC can effectively produce robust and discrimi-
native representation from speech, and significantly out-
perform state-of-the-art approaches in experiments.

2 Related Work
Speech emotion recognition. State-of-the-art SER tech-
niques are mainly developed with neutral networks. [Poria et
al., 2016] proposed a CNN based feature learning approach
to extract emotion-related features from frame-level LLDs.
[Lee and Tashev, 2015; Poria et al., 2017] proposed the use of
RNN and its LSTM variants to model contextual information.
[Trigeorgis et al., 2016] proposed an end-to-end learning ap-
proach to reduce hassle and cost in developing SER model.
Attention mechanism. The successful employment of at-
tention mechanism, as in automatic speech recognition (ASR)
[Chorowski et al., 2015] and machine translation (MT) [Bah-
danau et al., 2014], has empirically demonstrated the ef-
fectiveness of attention mechanism in selectively focusing
on specific information. In developing SER systems, [Mir-
samadi et al., 2017] proposed the use of local attention with
RNN, [Lian et al., 2018] proposed the use of transformer
structure in representation generation, both can significantly
improve the emotion inferring performance.



Figure 2: Group of layers are separated by the bold lines, and striding downsampling with a factor of 2 is processed after the blue lines. Red
recurrences represent the Multi-head Self-attention blocks.

3 Methodology
3.1 Convolutional Feature Learning
Residual convolutional network (RCN) is proposed for infor-
mative feature learning with 1-D temporal convolutional lay-
ers. Developed from [He et al., 2016], the stacked layers keep
the original temporal structure of input signals through resid-
ual structure in the progressively feature extracting process,
thus to retain the important temporal information of speech.

The structure of RCN is depicted in Fig.2(a). For the
lth group Gli , the first convolutional layer employs 2-stride
length, increasing receptive field and reducing the temporal
resolution; for the rest ith layer Gli , the output is calculated as

(Gli ∗ f li )(p) =
∑

a+b=p

Gli (a) f li (b) (1)

where f li is the filter of Gl, and the domain of p is the fea-
ture map in Gli . Specially, to optimize the training efficiency,
batch normalization [Ioffe and Szegedy, 2015] is utilized in
the convolutional layers. Furthermore, human vocal percep-
tion is based on consonant-vowel syllables with duration from
150 msec to 200 msec [Steinschneider et al., 2013]. In this
work, for input acoustic features with 5 msec shift length, we
employ l = 5 groups convolutional layers for feature learn-
ing, producing learned suprasegmental features with granu-
larity of 160 msec, which is close to the granularity in human
perception.

3.2 Multi-head Self-attention
Attention-capturing vocalizations in speech can contribute
more to human emotion perception, and significantly affect
the perception to other vocalizations. In this work, Multi-
head Self-attention mechanism [Vaswani et al., 2017] is pro-
posed to model the relative dependencies between elements,
meanwhile focusing on attention-capturing factors in speech.
With the enhanced attention ability, the network can fur-
ther import emotion-salient information from input, provid-
ing discriminative feature learning result for the representa-
tion learning component.

Developed from self-attention, Multi-head Self-attention
compute a weighted output with input and key-value pairs,
where the weights assigned are computed by a compatibility
function using the input and corresponding keys.

For the given input sequence H , self-attention computes
dk, dk, dv dimensional queries, keys, values Q,K, V with
linear projections. The attention output is then calculated as

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V (2)

Figure 3: The parallel structure of Multi-head Self-attention.

To jointly attend to information from different represen-
tation subspaces at different positions, multi-head attention
is proposed. Compared to single attention, multi-head at-
tention performs r times different linear projections from
queries, keys, values Qi,Ki, Vi, where i = 1, ..., r, and then
performs the attention function in parallel, yielding (dv/r)-
dimensional output values. These values are concatenated
and projected again to produce the final values, resulting
in higher effectiveness in producing attention representation
[Vaswani et al., 2017]. As depicted in Fig.3, the Multi-head
Self-attention is calculated as

MultiHead(Q,K, V ) = Concat(head1, ..., headr)W
O

where headi = Attention(QWQ
i ,KW

K
i , V WV

i )
(3)

where WQ
i WK

i , WV
i are the weight matrices in parallel at-

tentions, with the dimension of dk/r, dk/r , dv/r respec-
tively. WO is the weight matrix in linear output function. In
this work, as depicted in Fig.2(b), Multi-head Self-attention
is applied in residual blocks, each with r = 4 parallel heads.

3.3 Global Context-aware Attention LSTM
In communication, participants perceived each other’s emo-
tion through the understanding of the whole sentence. Mean-
while, vocalizations in speech contribute different to the final
emotion perception. To model the contribution differences,
GCA-LSTM [Liu et al., 2017] is employed in this work,
which exploits the global context information to measure the
relevance of vocalizations, and selectively imports informa-
tion for utterance-level representation generation.

As depicted in Fig.4, GCA-LSTM contains two LSTM lay-
ers and one global context memory. The representation F is
maintained in the global context memory, and gradually re-
fined. In process, the first LSTM layer encodes the learned
suprasegmental features, and initializes the global context
memory F(0). The second LSTM layer performs attention
over the hiddens to compute the attention representation F ,
which is used to refine F. The refining of F is iteratively
processed I times to progressively learn discriminative rep-



Figure 4: Global Context-aware Attention LSTM. The output F(I)

is used as the generated representation for emotion inferring.

resentation. After I-th refining iteration, the utterance-level
representation F(I) is used as the learned representation.

Global context memory initialization
For the suprasegmental feature sequence M =
(m1, ...,mn, ...,mN ), the first LSTM layer computes
the hidden vector sequence h = (h1, ..., hn, ..., hN ) from
n = 1 to N as following equations:

fn = σ(Wfmn + Ufhn−1 + bf ) (4)
in = σ(Wimn + Uihn−1 + bi) (5)
on = σ(Womn + Uohn−1 + bo) (6)
cn = fn ◦ cn−1 + in ◦ tanh(Wcmn + Uchn−1 + bc) (7)
hn = on ◦ tanh(cn) (8)

where σ is the Sigmoid activation function, f , i, o and c are
the input gate, forget gate, output gate and memory cell acti-
vation vectors respectively, W , U and b items are the weight
matrices and bias vectors of each gate. The last hidden output
hN is used as the initialization value F(0) of global context
memory F. To facilitate description, the hidden output hn of
the first LSTM layer is written as hn in the following.

Global context memory refining
The informativeness degree of the input is firstly assessed at
each time step. In the i-th iteration, the network learns an
informativeness gate r(i)n using both h = (h1, ...,hn, ...,hN )
and F(i−1) from the previous iteration

e(i)n =We1(tanh(We2

(
hn

F(i−1)

)
)) (9)

r(i)n =
exp(e

(i)
n )∑N

n=1 exp(e
(i)
n )

(10)

The learned informativeness gate r(i)n is normalized by min-
max normalization to range [0, 1], representing the relevance
degree of input h to the global context F(i−1). The calcula-
tion of memory cell cn is modified to:

cn =fn ◦ cn−1 ◦ (1− r(i)n )

+ in ◦ tanh(Wchn + Uchn−1 + bc) ◦ r(i)n

(11)

With the use of informativeness gate r(i)n , the cell state cn
is updated according to the relevance of the input hn to the
global context, i.e., the cell state will import more informa-
tion from the input with higher relevance score. With this

mechanism, the utterance-level representation learning will
selectively focus on the informative parts of speech with con-
sideration of global contextual information.

The hidden output hn of the second LSTM layer at each
step is calculated following Eq.4 to Eq.8, with the memory
cell state updating scheme replaced from Eq.7 to Eq.11, using
h = (h1, ...,hn, ...,hN ) from the first LSTM layer as input.
For the i-th iteration, the last hidden output h(i)N is used as the
attention representation F(i) to refine the representation F.

F(i) = ReLU(WF

( F(i)
F(i−1)

)
) (12)

After I-th refining iteration, F(I) is fed to the following
classifier to infer speech emotion. With the iteratively refin-
ing, the relevance score is progressively enhanced and benefit
the representation learning component in emotion-salient in-
formation importing, providing more robust and discrimina-
tive representation for emotion inferring and thus to improve
the overall performance of the proposed SER framework.

3.4 Lexical Representation Learning
The proposed framework can also benefit from employing
multi-modal inputs. For the transcribed text with K words,
Word2Vec [Mikolov et al., 2013] is utilized to generate the
lexical features R = (r1, ..., rk, ..., rK), which are fed to an
LSTM layer to calculate hidden hr = (hr1, ..., hrk, ..., hrK).
The last hidden output hrK is employed as the utterance-
level representation RT of the sentence, which is concate-
nated with F(I) as the input to the emotion classifier.

4 Experiments
The public emotion benchmark database IEMOCAP [Busso
et al., 2008] and real scene database RID are used in the
experiments for performance evaluation. IEMOCAP is em-
ployed to compare the performance of the proposed SER
framework with state-of-the-art approaches, and RID is em-
ployed to assess the robustness and effectiveness of the pro-
posed framework in realistic interaction scenarios. The im-
plementations of this work are shared on the public website1.

4.1 Experimental Setup
Database. The IEMOCAP database contains 12 hours of
conversations in English, segmented into 5,531 utterances
and categorized with 9 emotion classes: anger, happiness,
sadness, neutral, excitement, frustration, fear, surprise, and
others. In experiment, to compare with state-of-the-art ap-
proaches, the utterances labeled ‘excitement’ are combined
with the ‘happy’ class, forming a four-class database la-
beled {happy, angry, sad, neutral} with each class con-
taining {1636, 1103, 1084, 1708} utterances respectively.

RID is collected from realistic human-computer interac-
tions by Microsoft, authored and labeled by users. The
database contains 358,024 utterances, categorized into 5 emo-
tional classes: angry, neutral, happy, sad and surprise, each
containing {82952, 61629, 67499, 82125, 63819} utterances
respectively. Both IEMOCAP and RID are randomly shifted
and divided into three partitions with a proportion of 8:1:1 for
training, validation and testing.

1https://github.com/thuhcsi/IJCAI2019-DRL4SER/



Method IEMOCAP IEMOCAP RID
Input Reported UA* UA F1 Input Reported UA* UA F1 Input UA F1

[Xia and Liu, 2017] DNN A 60.1% 60.4% 0.597 A+L - 72.8% 0.731 A 68.7% 0.691
[Poria et al., 2016] CNN A 61.3% 60.7% 0.608 A+L 65.1% 69.7% 0.702 A 71.2% 0.719
[Poria et al., 2017] LSTM A 57.1% 55.8% 0.563 A+L 74.5% 73.9% 0.740 A 62.1% 0.620

[Mirsamadi et al., 2017] RNN & Attention A 58.8% 59.6% 0.594 A+L - 74.3% 0.745 A 69.1% 0.687
Our approach The proposed RLC A - 69.4% 0.693 A+L - 79.2% 0.791 A 90.2% 0.901

Table 1: The performances of state-of-the-art approaches and the proposed framework on IEMOCAP and RID. Unweighted Accuracy (UA)
and F1-measure score (F1) are the higher the better. A: acoustic features, L: lexical features. (*: the original performance reported in paper.)

Features. For better comparison to state-of-the-art ap-
proaches, acoustic features and textual features are extracted
from speech and corresponding transcribed text. As sug-
gested in computational paralinguistic challenges (ComParE)
[Schuller et al., 2017], 17-dimensional LLD acoustic features
are extracted as the input: 12-dimensional Mel-frequency
cepstral coefficients (MFCCs) and 1-dimensional logarithmic
energy, voicing probability, harmonic-to-noise ratio (HNR),
logarithmic fundamental frequency (LF0) and zero-crossing
rate, with 25 msec frame window length and 5 msec intervals.
Lexical features are extracted using a well-trained Word2Vec
model proposed in [Mikolov et al., 2013], resulting in 300-
dimensional vector for each word of input utterances.
Hyper-parameters. In the proposed framework, filters em-
ployed in the residual convolutional layers are depicted in
Fig.2, each Multi-head Self-attention block has 4 parallel
heads, and each LSTM contains 256 units. The iteration times
I in GCA-LSTM is empirically set at 3. The emotion classi-
fier is constructed with three stacked dense layers, each con-
tains 256 units. The initial learning rate of training is 10−3.
Implementation and training. The proposed framework
and state-of-the-art comparisons are implemented using Ten-
sorFlow [Abadi et al., 2015] deep learning framework,
trained by stochastic optimization with 128 samples per
batch. Cross-entropy loss is employed as the loss function to
measure the performance of emotion recognition, and Adam
[Kingma and Ba, 2014] algorithm is employed as the opti-
mizer in training. Specially, back-propagation through time
(BPTT) is employed to train the LSTM oriented models.
Evaluation Metrics. In this work, unweighted accuracy
(UA) [Rozgic et al., 2012] and F1-measure [Powers, 2011]
are employed to measure the performance of the proposed
framework and the comparisons. UA is defined as the mean
of accuracies for different emotion categories. All the experi-
mental results reported are based on 10-fold cross-validation.

4.2 Comparison to State-of-the-art
Four representative state-of-the-art SER approaches are im-
plemented for comparison with the proposed framework on
IEMOCAP and RID. Specially, the numbers of filters/units
of convolution/dense layers in comparisons are balanced to
ensure the parameters consistency.

1) [Xia and Liu, 2017] employs a series of statistics func-
tions on LLDs to generate utterance-level representa-
tion, and a DNN based classifier to infer emotion.

2) [Poria et al., 2016] employs CNN and multiple kernel
learning classifier to extract features from multimodali-
ties and infer emotion.

3) [Poria et al., 2017] the conventional LSTM based model
is used to capture inner contextual information of utter-
ances for speech emotion recognition. Specially, to com-
pare with the proposed framework, the cross-utterance
contextual information is not considered.

4) [Mirsamadi et al., 2017] employs the local attention-
based RNN for emotional relevant feature production
and emotion recognition.

Experimental result. As shown in Table.??, our imple-
mentations of state-of-the-art approaches have similar perfor-
mance to the reported results of original papers. On IEMO-
CAP, when using acoustic features only, the proposed SER
system achieves significant improvement on UA, +14.9%
relative improvement compared to [Xia and Liu, 2017],
+14.3% compared to [Poria et al., 2016], +24.3% compared
to [Poria et al., 2017], +16.4% compared to [Mirsamadi et
al., 2017].When evaluated with larger data scale on RID,
all the implementations have achieved better performance,
and the proposed framework gains +26.7% to +45.2% rel-
ative improvement on UA compared to state-of-the-art ap-
proaches. When considering both audio and lexical features,
the proposed system also outperforms other comparisons with
+6.6% to +13.6% relative improvements on UA.

4.3 Component Contribution Research
To figure out the contribution of individual components, sys-
tems with different combining of measures are implemented:

1) Baseline system, conventional LSTM based approach
[Poria et al., 2017], employing stacked LSTM layers to
infer emotion using input features directly.

2) System 1 (S1), residual convolutional network is em-
ployed for feature learning, and stacked LSTM layers
are used to produce the utterance-level representation.

3) System 2 (S2), Multi-head Self-attention blocks in resid-
ual convolutional network are employed to enhance the
effectiveness of feature learning.

4) System 3 (S3), GCA-LSTM is employed to replace the
stacked LSTM layers for representation generation.

Experimental result. As shown in Table.??, when eval-
uated on IEMOCAP with acoustic features, applying RCN
gains +9.6% relative improvement on UA compared to the
baseline system. Applying Multi-head Self-attention can fur-
ther gain +6.9% relative improvement on UA. Compared with
S2, with GCA-LSTM for representation generation, the pro-
posed S3 system gains +5.0% relative improvement on UA.
Similar improvements can be also observed in experiments
on RID, indicating the effectiveness of the used components.



Parameters Residual
CNN

Multi-head
Self-attention RNN Cell IEMOCAP RID

Input UA (%) F1 Input UA (%) F1 Input UA (%) F1
Baseline 9.27M NO NO LSTM A 56.4% 0.565 A+L 72.9% 0.731 A 62.1% 0.620

S1 9.15M YES NO LSTM A 61.8% 0.621 A+L 74.3% 0.745 A 74.6% 0.744
S2 9.07M YES YES LSTM A 66.1% 0.667 A+L 77.1% 0.770 A 85.3% 0.849
S3 9.11M YES YES GCA-LSTM A 69.4% 0.693 A+L 79.2% 0.791 A 90.2% 0.901

Table 2: Experimental results for component contribution evaluation. A: acoustic features. L: lexical features. Unweighted Accuracy (UA)
and F1-measure score (F1) are the higher the better. The units employed in comparison systems are balanced to ensure parameters consistency.

Figure 5: The intermediate result in processing an angry speech.
Red words present the attention-capturing vocalizations for human
annotator. (a): Learned correlation matrix in a head of Multi-head
Self-attention block, the brighter the pixel, the higher the attention
value is. (b): The informativeness degree computed by GCA-LSTM.

4.4 Analysis and Discussion
Learned Suprasegmental Features Analysis. As depicted
in Fig. 5(a), in the learned correlation matrix, the attention-
capturing vocalizations are presented with higher importance
weights than other elements. As the correlation matrix is em-
ployed to compute the final value of output, this mechanism
can help the model to selectively focus on emotion-salient in-
formative elements in feature learning.
Informativeness Degree Analysis. As shown in Fig. 5(b),
in GCA-LSTM, emotion-salient factors are presented with
significantly higher informative scores; and the informative
score difference can be further enhanced in the iteratively
learning. The informative scores can directly determine the
information importing, hence the generated representation
will focus more on emotion-salient factors in speech, and
meanwhile ignore the stochastic disturbance. In this way, the
learned representation can be more robust and discriminative.
Data Scale Evaluation. The training data scale can signifi-
cantly affect the performance of the proposed framework. As
shown in Fig.6, started with restricted training data scale, the
framework performance is limited and gradually improved
with increasing training data, and achieves relative stability
after using 36,000 utterances from each emotion class.

From the results and analysis, conclusions are summarized:
1) The comparison between [Poria et al., 2017] and other

implementations has stated the effectiveness of LSTM in
representation generation; however, for input with long
temporal steps, the performance is limited.

2) Residual convolutional network is effective in learning
paralinguistic features, meanwhile providing efficient
time-resolution reduction.

Figure 6: Data scale evaluation, the value of horizontal axis repre-
sents the number of utterances from each emotion class in RID.

3) Using Multi-head Self-attention blocks in residual con-
volutional network provides strong ability in model-
ing the element-wise relative dependencies across the
learned suprasegmental features, and further enhances
the ability in learning emotion-salient information.

4) By employing GCA-LSTM, with the strong global
context-aware attention ability, the RLC can selectively
import information from emotion-salient factors, pro-
viding more discriminative representation for SER.

5) Data scale is important in training an effective SER sys-
tem. The performance of SER system is limited when
trained with limited data; with the increase of data scale,
the performance will improve significantly.

5 Conclusion
In this paper, we proposed a novel representation learning
component (RLC) for speech emotion recognition. Con-
structed with Multi-head Self-attention and GCA-LSTM, the
RLC can extract informative suprasegmental features from
acoustic features, and produce robust and discriminative rep-
resentation with selective attention. Experiments on IEMO-
CAP and a real scene interaction database demonstrate the
outperformance of the proposed SER framework, with signif-
icant improvement comparing to state-of-the-art approaches.
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