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ABSTRACT

Speech emotion recognition (SER) plays an important role
in intelligent speech interaction. One vital challenge in SER
is to extract emotion-relevant features from speech signals.
In state-of-the-art SER techniques, deep learning methods,
e.g, Convolutional Neural Networks (CNNs), are widely em-
ployed for feature learning and have achieved significant
performance. However, in the CNN-oriented methods, two
performance limitations have raised: 1) the loss of temporal
structure of speech in the progressive resolution reduction;
2) the ignoring of relative dependencies between elements in
suprasegmental feature sequence. In this paper, we proposed
the combining use of Dilated Residual Network (DRN) and
Multi-head Self-attention to alleviate the above limitations.
By employing DRN, the network can retain high resolution
of temporal structure in feature learning, with similar size
of receptive field to CNN based approach. By employing
Multi-head Self-attention, the network can model the in-
ner dependencies between elements with different positions
in the learned suprasegmental feature sequence, which en-
hances the importing of emotion-salient information. Exper-
iments on emotional benchmarking dataset IEMOCAP have
demonstrated the effectiveness of the proposed framework,
with 11.7% to 18.6% relative improvement to state-of-the-art
approaches.

Index Terms— dilated residual network, multi-head self-
attention, speech emotion recognition

1. INTRODUCTION

In human speech interaction, paralinguistic characteristics
like emotions, intonations and styles are employed to convey
the underlying intent of messages. Recognizing and interpret-
ing to these paralinguistic characteristics can help intelligent
spoken interaction systems to understand the underlying user
intention, and further improve the user experience. Therefore,
automatic speech emotion recognition (SER) has become a
research focus in human-computer interaction field.

In the development of SER systems, a vital challenge is
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to extract emotion-relevant features from speech [1]. Tradi-
tionally, the most popular approach is to apply a series of sta-
tistical aggregation functions (e.g., mean, max, variance, etc)
on acoustic features (e.g., pitch, energy, etc) extracted from
speech, to produce a long statistical feature vector for emotion
classification [2]. The produced feature vector can roughly
describe the temporal variations of speech signals, which are
assumed to be highly related to the underlying emotion. With
the development of deep learning technology, automatic fea-
ture learning algorithms are proposed to learn task-oriented
features for SER, such as Deep Neutral Networks (DNNs),
Convolutional Neutral Networks (CNNs), Recurrent Neutral
Networks (RNNs), and their variants [3, 4, 5, 6]. Particularly,
being developed from perception mechanism of the living
creatures, CNNs has strong ability to filter out task-irrelevant
information from input speech, proving clear patterns for the
emotion classifier for emotion inferring [7]. Same as the suc-
cessful employment in automatic speech recognition (ASR)
[8] and speaker identification [9], the using of CNNs has also
achieved significant improvement on SER task comparing to
conventional approaches [4, 10, 11].

In state-of-the-art SER systems [4, 10, 11], CNNs are
applied over windows of acoustic features with progressive
resolution reduction, to produce higher-level features for the
upper emotion classifier. However, while the progressively
downsampling provides strong capability in local context
modeling and emotion-related patterns detecting, the tempo-
ral structure of speech will also gradually lose in this process.
As temporal evolution of speech is assumed to be highly
related to the emotions [12], such loss can hamper the effec-
tiveness of the SER system. In addition, in human emotion
perception, attention-capturing vocalizations can produce
greater activation to cortex, and significantly affect the per-
ception of other vocalizations [13]. Capturing these relative
dependencies between vocalizations can help the network
to focus on emotion-salient parts of speech, and selectively
import emotion-relevant information in feature learning, pro-
viding more discriminative representation for the emotion
classifier. However, in CNN-oriented state-of-the-art meth-
ods, such dependencies are less considered.
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Fig. 1. The proposed framework uses LLDs as input, employs DRN with Multi-head Self-attention (represented by red recur-
rences) for feature learning, generates utterance-level representation with LSTM, and infers emotion with DNN based classifier.

In this paper, we propose the use of Dilated Residual Net-
work (DRN) [14] and Multi-head Self-attention [15] for SER,
to alleviate the loss of temporal structure and model the rela-
tive dependencies between suprasegmental features. Compar-
ing to CNN based approaches, DRN inherits the properties of
residual network, keeping the temporal structure of input sig-
nals through the network; and with dilation, the network can
compensate the reducing of receptive field, proving strong
ability in modeling local context. Self-attention is an atten-
tion mechanism relating different positions of input sequence;
with multi-head mechanism, the function can further jointly
attend information from different representation subspaces to
improve the modeling performance. By applying Multi-head
Self-attention in DRN, the network can model the underlying
dependencies between different positions of suprasegmental
features, proving selectively focusing on emotion-salient in-
formation in feature learning process.

The overall structure of the proposed SER framework
is depicted in Fig.1. In inference, Low-Level Descriptors
(LLDs) [2] are extracted from speech signal and used as the
input. The DRN with Multi-head Self-attention is employed
to generate suprasegmental features with high temporal res-
olution and selective attention. Long Short-Term Memory
Recurrent Neural Network (LSTM) is employed to produce
the utterance-level representation vector from the supraseg-
mental features sequence, and a DNN based classifier with
stacked dense layers is employed to infer emotion with the
generated representation.

2. METHODOLOGY

In this paper, we propose the use of DRN with Multi-head
Self-attention for feature learning in SER, which can alleviate
the loss of temporal structure and capture the relative depen-
dencies of elements in the progressively feature learning.

2.1. Dilated Residual Network

The Dilated Residual Network (DRN) employed in this work
is developed from [14], with starting point of residual network
presented in [16], and consists with five groups of 1-D tem-
poral convolutional layers. In residual network, for i* layer

in group G, where [ = 1, ..., 5, the output is calculated as

G+ fp)= D> Gi(a) f(b)

a+b=p

(D

where f! is the filter associated with G!, and the domain of p
is the feature map in G!. A nonlinearity is in the following,
which is omitted in the equation for clear declaration. Striding
with a factor of 2 is employed in the first layer of each group
for downsampling, reducing the temporal resolution and in-
creasing the receptive field of convolutional layers.

To increase temporal resolution in higher layers for re-
taining temporal structure, a simple approach is to remove
striding from some interior layers. However, this will hamper
the network from exploiting contextual information while re-
moving subsampling (striding) will cause the reduction of re-
ceptive field in subsequent layers. Since the context is impor-
tant in human speech emotion perception, such loss will cause
performance degradation in SER. To alleviate this problem,
dilated convolution [17] is employed in DRN to compensate
the reduction in receptive field from striding removing. For
layers with k-dilated convolution, the output is calculated as

Gl fHP) = D Gla) £ (b)

a+kb=p

2

The structure of the employed DRN is shown in Fig.2(b).
In G} and G?, the striding layers are eliminated and the convo-
lutional layers are replaced with 2-dilated, 4-dilated convolu-
tions, respectively. Thus, for input acoustic feature sequence
with 10 msec frame length, the extracted suprasegmental fea-
tures are with a granularity of 40 msec comparing to 160 msec
in conventional CNN structure, which provides more detailed
temporal variant information to representation production.

2.2. Multi-head Self-attention

Multi-head Self-attention mechanism [15] is proposed to
model the relative dependencies between elements with dif-
ferent positions in sequence, enhancing the information im-
porting from emotion-salient parts of speech. Developed
from self-attention, Multi-head Self-attention maps the input
sequence and a set of key-value pairs to a weighted output,
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Fig. 2. Changing the CNN to DRN with Multi-head Self-attention. Group of layers are separated by the bold lines, and striding
downsampling with a factor of 2 is processed after the blue lines. In DRN, 2-dilated and 4-dilated convolutional layers are
employed in group 4 and 5 (G* and G®), and the red recurrences represent the Multi-head Self-attention computing.
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Fig. 3. The parallel structure of Multi-head Self-attention.

where the weights assigned are computed by a compatibility
function using the input sequence and corresponding key.

As depicted in Fig.3, for frames in given hidden sequence
H, the self-attention computes queries, keys, values of dimen-
sion dg, dg, d,, with linear projections. By packing them into
matrices ), K, V, the attention output is calculated as
T

Attention(Q, K, V) = softmax( ?/CT
k
To exploit the information from different representation

subspaces at different positions, multi-head attention is fur-

ther proposed to perform multiple attention function r times
to generate queries, keys, values matrices @;, K;,V; from

1 = 1,...,r. This mechanism has reported with higher ef-

fectiveness in producing attention representation in [15]. The

Multi-head Self-attention is calculated as

MultiHead(Q, K,V) = Concat(heads, ..., head, )W©

where head; = Attention(QWiQ, KwWE . vw})
“
where WiQ WK, WY are the weight matrices in parallel at-
tentions with dimension dy /7, di /7 , d,, /r, respectively. wo
is the output weight matrix with dimension d,,.

In this work, as depicted in Fig.2(c), Multi-head Self-
attention is applied in residual blocks in DRN, of each with
r = 4 parallel heads. With the construction, the network can
exploit the relative dependencies of elements at each group
level, progressively enhancing the emotion-relevant informa-
tion importing in feature learning procedure.

o0

2.3. Speech Emotion Recognition

LSTM is employed to produce the utternance-level repre-
sentation. For the suprasegmental feature sequence M =

(m1, ..., My, ...,my), the network computes hidden se-
quence h = (hy,...;hy, ..., hy) fromn = 1to N as

fo=0Wsmy +Ushp—1 + by) 5)
in = o(Wimy + Uihp—1 + b;) (6)
on = o(Womy, + Ushy—1 + b,) (7
Cn = fn 0 Cpn_1 +in o tanh(Wemy, + Uchyp—1 +b:)  (8)
hy, = 0y, 0 tanh(cy,) 9)

where ¢ is the Sigmoid activation function, f, 7, o and c are
the input gate, forget gate, output gate and memory cell acti-
vation vectors respectively, W, U and b items are the weight
matrices and bias vectors of each gate. The last hidden output
hy is used as the utterance-level representation, and fed into
the classifier to infer emotion.

3. EXPERIMENTS

3.1. Experimental Setup

Database. IEMOCAP [18] database is employed for perfor-
mance assessment, of which contains 12 hours English con-
versations, segmented and categorized into utterances with 9
emotion classes. Same to the reported procedure in state-of-
the-art techniques, utterances in ‘exciting’ class are combined
to the happy class in evaluation, to form a four-class database
labeled with {happy, angry, sad, neutral}, each class con-
tains {1636, 1103, 1084, 1708} utterances respectively.
Features. As suggested in the series of computational
paralinguistic challenges (ComParE) [2], the TUMs open-
source openSMILE [19] feature extractor is employed to ex-
tract LLDs from utterances, which contains 12-dimensional
Mel-frequency cepstral coefficients (MFCCs), 1-dimensional
logarithmic energy, voicing probability, harmonic-to-noise
ratio (HNR), logarithmic fundamental frequency (LFO) and
zero-crossing rate. Resulting in 17-dimmensional features
are extracted for input frames, of which has 40 msec frame
window length and 10 msec frame intervals.
Implementation and training. TensorFlow [20] is em-
ployed to implement the proposed framework as well as
the comparisons. Cross-entropy metrics is employed as the
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Table 1. Comparison results on IEMOCAP. Unweighted ac-
curacy (UA), and Fl-measure score (F1) are the higher the
better. (*: the original performance reported in paper.)

Table 2. Experimental results for component contribution re-
search. Unweighted accuracy (UA), and Fl-measure score
(F1) are the higher the better.

loss function, Adam [21] optimization algorithm with an
initial learning rate at 10~* is employed in training. Back-
propagation through time (BPTT) is employed to train the
LSTM oriented models.

Metrics. To assess the performance of the implemented
systems, unweighted accuracy (UA) and F1-measure [22] are
employed. The UA is defined as the mean of accuracies for
different emotion categories, and all the reported experimen-
tal results were based on 10-fold cross validation.

3.2. Comparison to State-of-the-art Approaches

Four representative approaches with reported performance on
IEMOCAP are selected as comparisons. In implementation,
to ensure the parameters consistency, the numbers of fil-
ters/units of convolution/dense layers in comparison methods
are balanced.

1) [Xia, 2017] proposed the use of a series of statistics
functions on acoustic features for representation pro-
duction, and DNN based classifier for SER [3].

2) [Poria, 2016] proposed the use of CNN for representa-
tion learning, and multiple kernel learning classifier to
infer speech emotion [4].

3) [Poria, 2017] employs conventional LSTM model to
capture inner contextual information in speech for emo-
tion recognition [5].

4) [Mirsamadi, 2017] employs local-attention enhanced
RNN for feature learning and emotion inferring [6].

Experimental result. As shown in Table.1, our imple-
mentations of state-of-the-art approaches have achieved close
performance to the original reported results. With the com-
bining usage of DRN and Multi-head Self-attention in fea-
ture learning, the proposed framework has achieved signif-
icant relative improvement comparing to state-of-the-art ap-
proaches, +11.7% to [Xia, 2017], +11.4% to [Poria, 2016],
+18.6% to [Poria, 2017], +12.9% to [Mirsamadi, 2017].

3.3. Component Contribution Research

To further discuss the contribution of individual components,
four comparison systems with different combining of compo-
nents or measures are implemented:

Parameters | Reported* UA | UA F1 Residual | Dilated | Self-attention UA F1
[Xia,2017] 9.5M 60.1% 60.3% | 0.599 Baseline No No No 60.3% | 0.599
[Poria,2016] 9.3M 61.3% 60.5% | 0.602 S1 Yes No No 61.8% | 0.621
[Poria,2017] 9.4M 57.1% 56.8% | 0.571 S2 Yes Yes No 63.1% | 0.637
[Mirsamadi,2017] 9.6M 58.8% 59.7% | 0.589 S3 Yes Yes Slngle-head 66.9% 0.670
The proposed 9.9M - 67.4% | 0.671 S4 Yes Yes Multi-head | 67.4% | 0.671

1) Baseline system, conventional CNN based approach[4].

2) System 1 (S1), residual network structure is employed
to alleviate the loss of temporal structure.

3) System 2 (S2), dilation is employed to increase the re-
ceptive field of the residual convolution layers.

4) System 3 (S3), conventional self-attention is employed
for relative dependencies modeling in feature learning.

5) System 4 (S4), multi-head attention mechanism is em-
ployed to enhance the system performance.

Experimental result. As shown in Table.2, started with
the baseline system, when applying the residual network
structure, the S1 has gained +2.5% relative improvement,
when applying the dilated convolutional layers, the S2 has
gained +2.1% relative improvement, when applying single-
head self-attention, the S3 has gained +6.0% relative im-
provement, when enhancing with multi-head mechanism, the
proposed framework has gained +0.7% relative improvement.

4. CONCLUSION

In this paper, we proposed the combining use of Dilated
Residual Network and Multi-head Self-attention for feature
learning in speech emotion recognition framework. With
the residual structure, the network can maintain the temporal
structure of input acoustic features in the regressive convo-
lution processes. By employing dilated convolutional layers,
the network can compensate the receptive field reduction
caused by removing striding layers. Using Multi-head Self-
attention, the network can model the relative dependencies
between different positions in the suprasegmental feature
sequence, denoting selectively focusing on emotion-salient
parts of speech in feature learning. Experiments demonstrate
the contribution and effectiveness of employing these tech-
niques in SER, with significant improvement comparing to
state-of-the-art approaches.
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