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ABSTRACT
Dance is greatly influenced by music. Studies on how to synthe-
size music-oriented dance choreography can promote research in
many fields, such as dance teaching and human behavior research.
Although considerable effort has been directed toward investigat-
ing the relationship between music and dance, the synthesis of
appropriate dance choreography based on music remains an open
problem.

There are two main challenges: 1) how to choose appropriate
dance figures, i.e., groups of steps that are named and specified in
technical dance manuals, in accordance with music and 2) how to
artistically enhance choreography in accordance with music. To
solve these problems, in this paper, we propose a music-oriented
dance choreography synthesis method using a long short-term
memory (LSTM)-autoencoder model to extract a mapping between
acoustic and motion features. Moreover, we improve our model
with temporal indexes and a masking method to achieve better per-
formance. Because of the lack of data available for model training,
we constructed a music-dance dataset containing choreographies
for four types of dance, totaling 907,200 frames of 3D dance mo-
tions and accompanying music, and extracted multidimensional
features for model training. We employed this dataset to train and
optimize the proposed models and conducted several qualitative
and quantitative experiments to select the best-fitted model. Finally,
our model proved to be effective and efficient in synthesizing valid
choreographies that are also capable of musical expression.
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Figure 1: Choreographywith dance figure adjustments in ac-
cordance with the length, rhythm, and emotion changes of
the music.

1 INTRODUCTION
Dance harmoniously engages the auditory, motor, and visual senses,
thereby promoting both learning ability and brain development
[22]. Throughout the history of human development, since music
and dance always appear simultaneously, dance choreography has
been strongly influenced by music. People often dance to music as
a form of ritual or etiquette at social occasions or festivals [17, 18].
Therefore, a successful dance synthesis algorithm could be bene-
ficial in fields such as music-aided dance teaching [29], character
motion generation for audio games [11] and research on human
behavior [23].

Traditional studies on motion learning have mainly focused on
recognizing actions from RGB videos recorded by 2D cameras [26].
However, capturing human motions in the full 3D space in which
they are performed can provide more comprehensive information.
Zhu et al. [30] successfully applied long short-termmemory (LSTM)
networks for motion recognition evaluated over several 3D-space
motion datasets, including the SBU Kinect interaction dataset [28],
the HDM05 dataset [21], and the CMU dataset [8]; however, the
motions in these datasets are mainly limited to common motions
such as "jumping" or "running", and data for dance motion learning
are still lacking. Regarding dance motion synthesis, Cardle et al.
[7] presented a general framework for the local modification of
motions using perceptual cues extracted from music. Shiratori et al.
[24] proposed an approach for synthesizing dance motions using
fixed motion frames to perform each figure. In [2], the authors
combined motion features from two databases to generate new
dance motions. However, it has been demonstrated that the inputs
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Figure 2: Workflow of our framework.

and outputs of the dance synthesis process in the abovementioned
methods are incomplete. Each segment of dance figures is randomly
selected from the database, leading to synthesized choreographies
with little linguistic or emotional meaning. As shown in Figure 1 ,
a subtle change in melody may not cause dancers’ choices of dance
figures to change, but their local joint postures or rhythm of motion
can be adjusted to suit the emotion of the music.

In our study, we summarize several challenges of music-dance
synthesis: 1) the lack of available training data, 2) how to choose
appropriate figures in accordance with music, and 3) how to create
a model in which local joint postures and rhythm can be adjusted
to suit musical emotion. To enrich the existing datasets, we con-
structed a music-dance dataset containing choreographies for four
types of dance, totaling 907,200 frames of music and 3D motions,
and extracted multidimensional features for model training. To fur-
ther study the relationship between music and dance, we employed
our dataset for model training and developed an LSTM-autoencoder
model formotion synthesis. Moreover, several quantitative and qual-
itative experiments were conducted to optimize the model, and we
selected the best-fitted model for music-oriented dance synthesis.
Figure 2 illustrates the workflow of our study.

Our contributions can be summarized as follows:
• We constructed a music-dance dataset that contains 40 com-
plete dance choreographies for four types of dance, totaling
907,200 frames collected with optical motion capture equip-
ment (Vicon). We also recorded the music with which the
choreographies were performed, making the collected data
especially useful for music-oriented dance synthesis. We ex-
tracted comprehensive features, including 63-dimensional
motion features, 16-dimensional acoustic features and 3-
dimensional temporal indexes. Thus, we obtained pertinent,
accurate, and complete features for the training of neural
networks. To our knowledge, this is the largest music-dance
dataset currently in existence. We have made our dataset
openly available to facilitate related research.1

1https://github.com/Music-to-dance-motion-synthesis/dataset

• Wedeveloped an LSTM-autoencodermodel formusic-oriented
dance synthesis to better understand the harmonious rela-
tions between music and dance motions. Specifically, the
model is designed to extract mappings between acoustic and
motion features, such that the emotions of the music will be
reflected by the synthesized dance. Thus, the model can learn
how dancers adjust their local joint postures and rhythm
of motion to express changes in musical emotions and the
rules for choosing motions in choreography.

• We conducted several qualitative and quantitative experi-
ments to quantify the performance of our model. As dance
is a kind of artistic creation, we considered user evaluations
in addition to the common Euclidean loss function to evalu-
ate the performance of the model. The experimental results
indicate that compared to several baselines, our model suc-
cessfully extracts acoustic features related to dance figure
choices and performs well in choosing dance figures that
match the length, rhythm, and emotion of a piece of mu-
sic. These experiments facilitate the understanding of the
relationship between music and dance.

The remainder of the paper is organized as follows: Section 2
focuses on related work, Section 3 formulates the main problem,
Section 4 presents the dataset, Section 5 presents the methodologies,
Section 6 presents the experimental procedures and results, and
Section 7 concludes the paper.

2 RELATEDWORK
3Dmotion dataset. In previous studies, such as the one conducted
by Fragkiadaki et al. [10], motion features have been extracted from
videos. However, these motion features were based on 2D capture.
Biological observations suggest that humans can recognize actions
from just the motions of a few light displays attached to the human
body [14]. The main existing datasets of this type are the SBU
Kinect interaction dataset [28], which contains 230 sequences in 8
classes and 6,614 frames in total; the HDM05 dataset [21], which
contains 2,337 skeleton sequences and 184,046 frames in total; and
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Figure 3: Motion capture, correction, and simplified visual-
ization. The 20 simplified joint points that are indicated in
this figure represent the human posture well.

the CMU dataset [8], which contains 2,235 sequences and 987,341
frames in total and is the largest skeleton-based human action
dataset collected to date. However, the CMU dataset contains only
64,300 frames of pure dance motions, and these dance motions are
discontinuous and not accompanied by music.

Therefore, regarding research on the relationship between music
and dance motions, data for model training are still lacking.

Dance motion synthesis. Berman [5] extracted motion fea-
tures within dance frames to build an action map to evaluate how
motions could be harmoniously connected. Takano [25] produced
a human motion generation system considering motion labels. Ka-
terina [10] proposed an Encoder-Recurrent-Decoder (ERD) model
for the recognition and prediction of human body poses. Although
these methods analyze the relations between motions, they ignore
the fact that music often strongly affects human dance motions.

Some works have focused on establishing mappings between
acoustic and motion features. Kim [15] labeled music with joint
positions and angles, and Shiratori [24] added gravity and beats as
supplementary information for predicting dance motions. Recently,
Manfrè [19] showed that a hidden Markov model (HMM) improved
the fluency of motion cohesion according to human experience.
However, since the motions used for mapping were fixed frames,
whether the generated dance animation was vivid enough was
entirely dependent on the number of motions present in the library.

Recently, Yaota [27] used several classic deep learning models
for dance synthesis. Alemi [1] proposed methods of predicting
subsequent frames from previous frames. However, these studies
did not consider the beat information of the music, which proved
to be very important.

Since these previous works have not successfully accomplished
dance synthesis with rational figure sequences and artistic musi-
cal expression, the design of an appropriate music-oriented dance
synthesis algorithm remains an open problem.

3 PROBLEM DEFINITION
The input dataset F = {Ai ,Mi } is a set of sequential features, con-
sisting of acoustic features Ai =< A1

i ,A
2
i , . . . ,A

DA
i > and motion

features Mi =< M1
i ,M

2
i , . . . ,M

DM
i >. The acoustic features are

extracted from the input audio files, and the motion features are
extracted from the input dance capture data.

Our goal is to build a model G(A → M). First, our model is
trained with the collected data {Ai ,Mi }. Then, for any input music
sequence A′

i , our model can synthesize a new dance sequenceM ′
i .

Figure 4: Our music-dance dataset.

4 DATASET
4.1 Data Acquisition
As mentioned in Section 2, although various motion datasets are
available in the literature, there is still a lack of data on dance mo-
tions with music, which are necessary for studying the relationship
between music and dance. A large set of motions for each type of
dance is also needed to extract desirable features. To establish a
dataset with sufficient and desirable data, we collected music-dance
data as described below.

Motion data acquisition. We asked professional dancers to
dance to music and captured their motions using Vicon optical
motion capture equipment.2 The captured data comprise four types
of dance (waltz, tango, cha-cha, and rumba), totaling 94 minutes and
907,200 frames.Wemanually corrected the data and converted them
into C3D format3 via Vicon Iq. These data record the positions of 41
skeleton joints in 3D space in each frame. We used the Python c3d
package to analyze the C3D files and reduced the 41 joint points to
21 joint points. A skeleton with a height of 1.62 meters in a neutral
pose, as shown in Figure 3, was used for all experiments.

Index annotation. To find better mappings between music and
motions, we asked professional dancers to tag all motions. Ac-
cording to the dancers, no matter how complicated a dance is, it
is always possible to extract basic motions. The tagged motions
were not used in model training but were useful in testing model
performance.

Audio data acquisition. We also labeled the music with the
dance figures performed at the corresponding time points.

2All dancers were female, with heights ranging from 1.68 meters to 1.72 meters.
3The C3D (Coordinate 3D) format provides a convenient and efficient means of storing
3D coordinates and analog data, together with all associated parameters, for a single
measurement trial.
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Feature Sound Characteristic Definition

MFCC Pitch a1i , . . . ,a
3
i

MFCC-delta Pitch change a4i , . . . ,a
6
i

Constant-Q chromagram Pitch a7i , . . . ,a
10
i

Tempogram Strength a11i , . . . ,a
15
i

Onset strength Strength a16i

Table 1: Acoustic features

Index Definition

Arithmetic progression through the whole song t1i
First frame of each beat t2i
Arithmetic progression repeated within beats t3i

Table 2: Temporal indexes

4.2 Feature Extraction
Our dataset provides extraction methods and extracted features for
future use.

Three types of features were extracted from the original data.
• Acoustic features, labeled as Ai =< a1i ,a

2
i , . . . ,a

16
i >.

• Motion features, labeled asMi =< m
1
i ,m

2
i , . . . ,m

63
i >.

• Temporal indexes, labeled as Ti =< t1i , t
2
i , t

3
i >.

All features were normalized to ensure that a mean value of zero
and a standard deviation of one for each sequence.

Acoustic features. An audio analysis library named librosawas
used for music information retrieval, as proposed by McFee [20]. Li-
brosa provides an easy means of extracting the spectral and rhythm
features of audio data. Specifically, we chose the mel frequency
cepstral coefficients (MFCC), constant-Q chromagram, tempogram
[12], and onset strength [6] as the acoustic features in our dataset.

In most cases, users are free to choose which features to use and
how many dimensions their feature vector has. The pre-extracted
acoustic features are shown in Table 1.

Temporal Indexes. The use of temporal indexes was inspired
by the network training process. The temporal indexes were ex-
tracted from the acoustic features.

Tempo or beat information4 is crucial for our task because all
dance music has a fixed tempo (number of beats/bars per minute).
When the recurrent layers in a neural network are fed beat informa-
tion as input, it is easier for them to understand the sequence as a
whole. Although the acoustic features contain the beat information,
this information will gradually fade with increasing layer depth
because the acoustic features are fed into the model only at the
very beginning. Thus, it is unwise to use the beat information in
the same way that we use other acoustic features. In addition to the
beat information, there are some other features that are also simple
and useful to all recurrent layers in our model. We selected those
features as temporal indexes to be fed directly into all recurrent
layers. These temporal indexes, listed in Table 2, can be regarded as
the control signal for our model. The arithmetic progression is used
to identify each frame’s location. It specifies the location of each

4The librosa library also provides tools for beat extraction [9].

Index Abbreviation Definition

Head-left Avg(LFHD LBHD) m1
i ,m

2
i ,m

3
i

Head-right Avg(RFHD RBHD) m4
i ,m

5
i ,m

6
i

Waist Avg(T10 STRN) m7
i ,m

8
i ,m

9
i

Shoulder-left LSHO m10
i ,m

11
i ,m

12
i

Elbow-left LELB m13
i ,m

14
i ,m

15
i

Wrist-left LFRM m16
i ,m

17
i ,m

18
i

Hand-left LFIN m19
i ,m

20
i ,m

21
i

Waist-left Avg(LFWT LBWT) m22
i ,m

23
i ,m

24
i

Knee-left LKNE m25
i ,m

26
i ,m

27
i

Ankle-left LANK m28
i ,m

29
i ,m

30
i

Heel-left LHEE m31
i ,m

32
i ,m

33
i

Toe-left LTOE m34
i ,m

35
i ,m

36
i

Shoulder-right RSHO m37
i ,m

38
i ,m

39
i

Elbow-right RELB m40
i ,m

41
i ,m

42
i

Wrist-right RFRM m43
i ,m

44
i ,m

45
i

Hand-right RFIN m46
i ,m

47
i ,m

48
i

Waist-right Avg(RFWT RBWT) m49
i ,m

50
i ,m

51
i

Knee-right RKNE m52
i ,m

53
i ,m

54
i

Ankle-right RANK m55
i ,m

56
i ,m

57
i

Heel-right RHEE m58
i ,m

59
i ,m

60
i

Toe-right RTOE m61
i ,m

62
i ,m

63
i

Table 3: Motion features

frame within a period of time. We built an arithmetic progression
ranging from zero at the beginning of the music to one at the end
to allow our model to easily identify the location of each frame.
A similar method was used to represent the locations of frames
within one beat.

Motion features. The original data contained 41 joints in 3D
space, from which we manually selected the 21 joints listed in Table
3 to represent the dancers’ motions.

In the original data, the absolute position was used to locate
each joint. We calculated the center of mass of each skeleton and
re-expressed the position of each joint relative to the center of mass
to ensure that identical movements performed in different locations
would be regarded as the same.

In our model, the Euclidean distance is used to quantify the
similarity of two frames. To ensure that the directions the dancers
were facing would not influence the performance of our model, for
each frame, we rotated the skeletons5 to face the audience.

The input motion data contained several spurs. For spur removal,
we applied a sliding window (4 frames wide) to the frame sequence.
If the Euclidean distance6 between the previous and next frameswas
larger than a certain threshold, the original motion was replaced
with the linear interpolation between the two frames.

The acoustic and motion features were extracted with two differ-
ent methods, so it was possible for them to have different sampling
rates. Thus, we needed to align them with each other.7 Acoustic

5The angle of rotation was determined from the dancer’s orientation, which could be
best identified from the waist joints (left-waist and right-waist).
6The Euclidean distance between two frames is defined as the sum of the Euclidean
distances between corresponding joints.
7Specifically, the acoustic features were sampled at 25 frames per second, whereas the
motion features were sampled at 40 frames per second.
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features are difficult to interpolate, so we applied a linear interpo-
lation algorithm to the motion features instead. The final acoustic
and motion features have all been scaled to a speed of 25 frames
per second (fps).

5 METHODOLOGIES
To extract the mappings between the acoustic and motion features,
we developed an LSTM-autoencoder model. The model contains
several basic layers, such as LSTM layers and dense layers.8

5.1 Fundamental Models
Here, we introduce the two fundamental models employed in our
synthesis approach.

LSTM. LSTM [13] is a network model based on a recurrent neural
network (RNN) that has proven successful at extracting time series
of features. Compared with an RNN, an LSTM network contains
additional forget gates andmemory blocks, which help it to perform
better in sequence-to-sequence mapping.

Autoencoder. An autoencoder [3] [4] is a machine-learning tool
used to reduce feature dimensions. An autoencoder can compress a
high-dimensional vector into a reduced-dimensional vector without
losing too much essential information.

An autoencoder consists of two neural networks. The first net-
work is called the encoder. When the original high-dimensional
vector x is fed into the encoder layers, it will be translated into a
reduced-dimensional feature vector z.

z = Encoder (x) (1)

The second network is called the decoder. The decoder reads the
feature vector z and predicts the original feature vector.

x ′ = Decoder (z) (2)

The loss function of the model is defined as the mean Euclidean
distance between the predicted vector x ′ and the real vector x .

minimize
√
∥x ′ − x ∥2 (3)

To reduce loss, the encoder tends to preserve as much informa-
tion as possible, while the decoder ensures that the feature vector
z contains sufficient information to represent the original vector.

5.2 Approach Description
LSTM Approach. As a preliminary attempt, we used an LSTM
network as the main basis of our model. In this model, the acoustic
features and temporal indexes of each frame are transformed into
hidden features via a dense layer, introducing additional nonlinear-
ity into the model. Then, this series of hidden features is fed into a
three-cell LSTM layer. The LSTM structure has a memory channel
Ct that stores useful information from previous outputs as it passes
them to subsequent cells. Finally, the outputs of the LSTM layer are
transformed by a dense layer to predict a series of motion features.

8Fully connected layers.

Figure 5: Structure of the LSTM approach.

The objective function of the model is the Euclidean distance
between the predicted and ground-truth motion feature series. The
stages of the model are illustrated in Figure 5.

This approach can learn the relationship between music and
dance to some extent. However, the following problems arise:

• The acoustic features have a high dimensionality, and it is
difficult for this model to summarize the mapping between
music and motions. Consequently, this model has difficulty
converging.

• It is difficult for this model to learn that motions associated
with single beats cannot be divided. Motion integrity should
instead be enforced by the structure of our model.

LSTM-autoencoder Approach. To address the difficulty of
learning the acoustic features, we made some improvements to
the LSTM approach. As a complement to the original Motion Pre-
dictor module, we added an Acoustic Feature Extractor module to
our model.

The Acoustic Feature Extractor is a network designed to reduce
the dimensionality of the acoustic features. In the original acoustic
features, each frame has a feature vector. However, as mentioned
above, the motion chosen for one beat should remain undivided;
therefore, we should introduce some structure to compress the
frame-indexed acoustic features into beat-indexed acoustic features.

An autoencoder design is used for the Acoustic Feature Extractor,
which takes the acoustic features Ai and the temporal indexes Ti
as input. We use an LSTM network to encode the acoustic features.

In general, the basic model structure is as follows:

Z ′
i =Encoder (concat(Ai ,Ti )) (4)

Zi =Maskinд(Z ′
i ) (5)

A′
i =Decoder (concat(Zi ,Ti )) (6)
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Figure 6: Structure of the LSTM-autoencoder model.

Ai is the original feature vector. Zi is the reduced-dimensional
feature vector extracted from Ai . Ti is the vector of the temporal
indexes. concat is the vector-concatenating operation.

Encoder is a network with the following layers:
• A dense layer to transform the original features into hidden
features.

• An LSTM layer to transform the hidden features and tem-
poral indexes into a reduced-dimensional hidden feature
vector.

• A second dense layer to perform the encoding process.
Maskinд is a layer introduced to transform the frame-indexed

acoustic features into beat-indexed acoustic features, thus reducing
their dimensionality. (This also reduces the likelihood of overfitting).
The input vector Z ′

i is a time series vector. The index i corresponds
to one audio frame. Obviously, the feature vector Z ′

i contains too
much information. We use this layer to mask off extraneous infor-
mation. In practice, we force the value of Z ′

i to be zero unless i is
the first frame of a beat. The prediction of the next motion is mostly
based on this frame.

The Decoder network has a structure similar to that of the en-
coder network. It also consists of a dense layer, an LSTM layer, and
another dense layer, in order of the data flow.

TheMotion Predictor module uses the reduced-dimensional acous-
tic features Zi to predict the motion featuresMi . The network con-
sists of an LSTM layer sandwiched between two dense layers. These
layers convert the reduced acoustic features Zi into the predicted
motion featuresM ′

i .
The final loss of our model is the combination of two losses.
The loss of the Acoustic Feature Extractor (lossextr ) is defined as

the Euclidean distance between the original and predicted acoustic
features:

lossextr =
√
∥A′

i −Ai ∥2 (7)

The loss of the Motion Predictor (losspred ) is defined as the Eu-
clidean distance between the predicted and ground-truth motion
features:

losspred =
√
∥M ′

i −Mi ∥2 (8)

Figure 7: a) Quantitative losses of different models. b) Qual-
itative user scores of different models.

The final loss is the combination of these two losses. While
losspred should be as small as possible, lossextr should also be
small to ensure that the extractor preserves the essential informa-
tion from the original acoustic feature vector. However, sometimes
the network will seek a smaller lossextr by allowing losspred to
increase, which is unacceptable. Hence, we define our objective loss
function as follows:

loss =max(Eth , lossextr ) + losspred (9)

The valueEth is a threshold value.9When lossextr is greater than
Eth , it has a nonzero derivative. In this case, our model will choose
to minimize lossextr . When lossextr is less than Eth , optimizing
lossextr will be as difficult as optimizing losspred , and thus, we do
not attempt to optimize lossextr .

Once the value of loss has been computed, the network parame-
ters are updated by the Adam update algorithm [16].

6 EXPERIMENTS
In this section, we report several qualitative and quantitative exper-
iments conducted to optimize our model by evaluating the effects
of synthesizing music-oriented choreography with different models
and parameter settings.

6.1 Metrics
To evaluate the dance synthesis performance achieved using dif-
ferent models and parameter settings, we considered both the Eu-
clidean losses for quantitative comparisons and user evaluations
for qualitative comparisons.

metric_loss =
∑

t ∈f rames

√√ ∑
i ∈f rame[t ]

(
Xt,i − X ′

t,i

)2
(10)

In our quantitative experiment, we calculated the Euclidean
losses between real and synthesized dances on a validation set.

The qualitative experiment was divided into 2 stages. We re-
cruited 20 participants (10male and 10 female) for our experiment.10
In the first stage of the experiment, we asked the participants to
score the dances synthesized by different models. In the second
stage, we asked the participants to evaluate how well the dances
we synthesized fit the corresponding music.

9Eth has a value of 0.45 in practice.
10Thirteen of the participants were professional dancers.



Dance with Melody: An LSTM-autoencoder Approach to Music-oriented Dance Synthesis MM’18, July 2018, Seoul, Korea

Figure 8: Losses of ourmodelwhenfitting each type of dance
(cha-cha, rumba,waltz, and tango). The x-axis represents the
number of training iterations, and the y-axis represents the
loss.

6.2 Methods for Comparison
As discussed in section 5.2, the proposed LSTM-autoencoder model
is based on an initially developed LSTMmodel. Moreover, the LSTM-
autoencoder model can either include the masking layer or not.
Thus, we compared the three models listed below:

• The plain 3-layer LSTM model.
• The LSTM-autoencoder model without the masking layer.
• The LSTM-autoencoder model with the masking layer.

We compared these models in quantitative and qualitative ex-
periments.

Quantitative Experiment. All three models shared the same
set of training parameters.

• The model loss was defined as the minimum loss over 10,000
iterations.

• The learning rate was 10−4.
• The batch size was 20.
• The data were split into 15% for validation and 85% for train-
ing.

• TensorFlow was used as the computational framework.
• The LSTM cells used in the prediction layers consisted of 3
sequential basic LSTM cells.

We measured the performance of the models in both quantitative
and qualitative experiments.

In the quantitative experiment, we ran each model 10,000 times
and recorded the minimum validation loss as the best performance.

Qualitative Experiment. In the first stage of the qualitative
experiment, we generated four dances with each of the threemodels.
We asked the participants to score the dances synthesized by the
different models from 4, representing the best, to 1, representing
the worst, and calculated the average user score for each model.

Figure 9: a) Losses for different type of dances. b) User ap-
proval ratings.

In the second stage, we evaluated how well the dances we syn-
thesized fit the music. We selected 5 songs of the same tempo for
each type of dance and synthesized a dance for each song. In the
experiment, we showed the participants two dances accompanied
by the same song; one was synthesized based on that song, while
the other was randomly selected from among the other 4 dances
synthesized for the other songs. We asked the participants to deter-
mine which of the two better expressed the emotions in the music
and calculated the user approval ratings for the "matching dance"
and the "non-matching dance" as the percentages of participants
who indicated that the corresponding dance was superior.

6.3 Results and Analyses
Quantitative Experiment.We used our proposed model to fit 4
types of dances. The loss functions11 are shown in Figure 8.

The local minima of each plot in Figure 8 correspond to good
model fits, indicating that the model is capable of synthesizing
motions in accordancewith the acoustic features.We conducted this
quantitative experiment with each model discussed in section 6.2,
and the results are shown in Figure 7. The autoencoder strategy has
a clear influence on the loss of our model. Themasking strategymay
not have an observable influence on the loss, but it does reduce the
dimensionality of the feature vectors fed into the Motion Predictor
module discussed in section 5.2. The quantitative results indicate
that the most suitable model for our task is the LSTM-autoencoder
model with the masking strategy.

Qualitative Experiment.Our qualitative experiment consisted
of two stages: model comparison and dance analysis. We then
conducted a final experiment for performance verification.

In the first stage of the qualitative experiment, as shown in Figure
7, the average user scores for each model were 1.31 for the LSTM
model, 2.33 for the LSTM-autoencoder model with masking, and
2.31 for the LSTM-autoencoder model without masking. Thus, the
LSTM-autoencoder model with masking outperformed the others.

In the second stage, the matching dance synthesized based on
the given song was more likely than the randomly selected dance to
be chosen by the participants as the dance that better expressed the
music’s emotions. The approval ratings for the "matching dance"
were 67% for waltzes, 65% for tangos, 76% for rumbas, and 79% for
cha-chas. Notably, the cha-cha was the type of dance for which
the "matching dance" had the highest probability of being selected,

11In our model, due to normalization, the prediction loss and reconstruction loss range
in value from 0 to 1, while the loss ranges from 0 to 2.
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Figure 10: The dance motions synthesized by our model corresponding to different changes in the music. As shown in this
figure, minor changes in the music will trigger only subtle adjustments in the dance motions, while marked changes in the
music will lead to entirely different motions.

possibly because the cha-cha figures show more prominent emo-
tional expression and the choreography is more consistent with
the music. The results of this experiment are shown in Figure 9.
This experiment also demonstrates that our model is capable of
music-dance synthesis for multiple dance types.

Finally, we sought to verify that our model could overcome the
challenges discussed in section 1. First, we added a short sequence
of drumbeats into a melody. The synthesized dance changed in
response to the drumbeats, and when the drumbeats ended, the
dance went back to its original state. Then, we replaced the melody
with a completely new one, and the entire corresponding segment
of choreography also changed. The results are shown in Figure 10.

6.4 Discussion
Based on the qualitative and quantitative experimental results, we
find that using only Euclidean losses for dance synthesis evaluation
is insufficient. Since dance is a kind of artistic creation, different
dancers may create different dance motions for the same music in
accordance with their personal styles, as shown in Figure 10. More-
over, within one dance, choreographers will try to avoid repeating
exactly the same dance movements to enrich the expression. For
example, in a tango, when executing a "basic reverse turn", dancers
have a variety of choices, all startingwith theman’s left foot, such as
the "five step" and the "contra check". However, the "contra check"
may be the better choice if the next beat is a strong, crisp note,
because this figure is a one-step quick pose showing the lady’s line;
the "five step", by contrast, is a moving figure that does not end in
a pose until the fifth step, so it may be more suitable for a piece
of melody that lasts into the second bar. Moreover, depending on

the musical structure and expression, the "contra check" may last
either 2 beats or 4 beats, and the "five step" may take the alterna-
tive form of the "extended five step", which has 7 steps and lasts
two more beats, in order to match the punctuation of the music.
Therefore, each dance movement in the real world is unique, and
for an acoustic-motion mapping evaluation, it is meaningless to
consider only the error between the output and the ground truth.
In this study, we were committed to studying the rules of dance
choreography as manifested in existing datasets and generating
new dance choreographies according to these rules. Moreover, we
considered that these synthesized choreographies should satisfy
human aesthetics. By jointly considering user evaluations and Eu-
clidean losses, we established a better evaluation mechanism as a
basis for further optimizing our model.

7 CONCLUSIONS
In this study, we presented a model for music-oriented dance syn-
thesis that uses acoustic features as input and outputs synthesized
dance choreographies in accordance with the input music while
achieving richer expression and better continuity. Our future work
will focus on three major objectives: 1) acquiring more data to
continuously enhance our dataset, 2) considering different user
preferences with regard to the synthesized dances, and 3) leverag-
ing our model to build various applications.
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