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ABSTRACT
Human-computer conversational interactions are increasingly per-
vasive in real-world applications, such as chatbots and virtual assis-
tants. The user experience can be enhanced through affective design
of such conversational dialogs, especially in enabling the computer
to understand the emotive state in the user’s input, and to generate
an appropriate system response within the dialog turn. Such a sys-
tem response may further influence the user’s emotive state in the
subsequent dialog turn. In this paper, we focus on the change in the
user’s emotive states in adjacent dialog turns, to which we refer as
user emotive state change. We propose a multi-modal, multi-task
deep learning framework to infer the user’s emotive states and
emotive state changes simultaneously. Multi-task learning convolu-
tion fusion auto-encoder is applied to fuse the acoustic and textual
features to generate a robust representation of the user’s input.
Long-short term memory recurrent auto-encoder is employed to
extract features of system responses at the sentence-level to better
capture factors affecting user emotive states. Multi-task learned
structured output layer is adopted to model the dependency of user
emotive state change, conditioned upon the user input’s emotive
states and system response in current dialog turn. Experimental
results demonstrate the effectiveness of the proposed method.
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1 INTRODUCTION
Automatic spoken dialog systems, known as interactive speech
agents, receive speech as input and response via natural language
to provide interactive services. With the development of intelligent
speech interaction technologies, human-computer conversational
interactions are increasingly pervasive in real-world applications,
including virtual assistants and chatbots such as Apple Siri, Amazon
Alexa, Microsoft Cortana and XiaoIce. A report1 from Microsoft
indicates Cortana has attracted 141 million monthly usages.

Human-human spoken interactions are highly expressive, using
different features of emotions, intonations and styles to convey
the underlying intent of the message [30]. To further enhance user
experience, intelligent interaction systems are expected to capture
and model such complex features for better understanding users’
intentions, especially understanding the emotive state in the user’s
input [13, 33]. Automatic emotion recognition is thus becoming a
focus in human-computer interaction research field. Emotion, as a
key component in human cognition and communication processes,
is embedded in the acoustic speech and the related transcribed
text [23]. Text-based sentiment analysis has been developed and
obtained remarkable achievements [26]. To better exploit the rich
emotion-related information embodied in speech, acoustic-based
emotion analysis is also proposed [9, 25]. [22] proposed a multi-
modal fusion strategy in emotion recognition, gaining a significant
performance improvement by utilizing the lexical, acoustic, visual
features as well as their correlations simultaneously.

In communication process, participant’s emotive state changes
dynamically. To enhance human-computer communication experi-
ence, speech interaction systems are required to generate affective
responses rather than neutral sentences [30]. Hence, a guide is
needed for the systems to evaluate whether the response is appro-
priate or not. For example, to help an anxious user calm down and
feel better, the systems should be able to gauge the influence of
their responses to the user, respond as needed over the course of
the spoken interactions and further provide appropriate and satis-
factory interactions. In understanding what user is trying to tell,
1https://goo.gl/yGu2Ef
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Figure 1: Overview of the proposed framework for inferring changes of user emotive states in conversational dialogs.

either verbally or nonverbally, and then inferring the user emotive
state changes caused by responses, we can introduce the emotional
intelligence into the speech interaction systems to further enhance
user experiences.

The emotive state changes in dialog conversation can be defined
as the difference of user emotive states between two adjacent dia-
log turns. To analyze the properties of emotive state changes, we
constructed a real-world speech interaction dialog data set with the
help of Sogou Speech Assistant. Some interesting observations are
noticed after analyzing the collected data: emotive state changes ex-
ist in the real-world human-computer interaction dialog scenarios,
triggered by system responses and related to the current states of
user emotion. These findings inspired us to develop a framework to
infer user emotive state changes using the user input utterances and
system responses in dialog turns. For exploiting the dependence
between emotive state changes and current user emotive states, a
conditional structure is further employed.

The proposed framework for user emotive state changes infer-
ring is illustrated in Fig.1. Related to different abstraction level,
acoustic features and lexical features extracted from user input
utterance are represented on a variety of formats and time res-
olution. Integrating the information with different modalities is
not trivial and can significantly influence the effectiveness of the
proposed framework. The influence caused by system responses
to user is also necessary to be considered. Furthermore, as the
user usually reacts to the system responses based on the under-
standing of the whole sentence, the framework should capture
factors affecting user emotive states at the sentence-level of sys-
tem responses. In this work, we introduce the use ofMTCF encoder
from multi-task learning convolution fusion auto-encoder (MTCF
AE) to integrate acoustic features and lexical features from user
input at feature-level. Developed from convolutional neutral net-
work (CNN) fusion model [7] and multi-task auto-encoder (MT AE)
[8],MTCF encoder in MTCF AE inherits the strong generalization
performance of conventional multi-task learning while integrat-
ing signals at different layers through convolution and pooling.
A long short term memory (LSTM) recurrent auto-encoder (RAE)
[28] is trained to map system responses into sentence-level vector
representation via LSTMencoder , as illustrated by the sentence-
level representation production component. Then in input-response

fusion component, the convolution fusion (CF) approach [7] is
further employed to integrate the encoded representations from
MTCF encoder and LSTMencoder for predicting the targeted user
emotive state changes. Considering the user emotive state changes
is highly related to current user emotive states in dialog turns, a
multi-task learning structured output layer (SOL) [29] is proposed
to model the dependencies, where the prediction of user emotive
state changes is conditioned upon the recognition result of user
emotive states. Experimental results on public emotion database
IEMOCAP and realistic interaction database have demonstrated
the effectiveness of the proposed framework.

The main contributions of this paper lie in three aspects: 1) this
is the first attempt to investigate the interactive influence of the
system-generated response on the user’s emotive state changes in
human-computer interactive dialogs; 2) a novel fusion structure is
suggested for multi-modal information integrating while reducing
the time resolution; 3) an effective structure is suggested to infer
user emotive states and emotive state changes simultaneously.

2 PROBLEM FORMULATION
Known. For conversations collected from realistic human-computer
speech interaction dialog system, each conversation contains sev-
eral dialog turns. In each dialog turn, user input one speech ut-
terance and system will feedback one automatically generated re-
sponse. For the given set of conversations C , each conversation
cm ∈ C contains a set of dialog turns Dm . For one dialog turn di ∈
Dm , it consists of user input utterance ui = {uai ,uti } and system
response ri = {rti }. For the user input utterance ui = {uai ,uti },
uai =

{
ua1i ,ua

2
i , ...,ua

Fi
i

}
and uti =

{
ut1i ,ut

2
i , ...,ut

Wi
i

}
are the set

of acoustic features extracted at frame-level from speech input and
lexical features at word-level from transcribed text. Specially, acous-
tic features uai and lexical features uti are aligned by exploiting a
hidden Markov model (HMM) based forced alignment model, thus
the uti is represented as uti =

{
ut1i ,ut

2
i , ...,ut

Fi
i

}
by upsampling

lexical features to match the length of acoustic features, where Fi
is the amount of frames of acoustic features uai . For each frame,
ua

j
i (1 ≤ j ≤ Fi ) in uai indicates a Dua dimensional vector rep-

resenting various acoustic features (e.g. fundamental frequency,
energy and spectral parameters), and ut

j
i in uti indicates a Dut



dimensional word embeddings representing the lexical information.
For the system response ri = {rti } with Ki words, lexical features
rti =

{
rt1i , rt

2
i , ..., rt

Ki
i

}
are extracted and represented using Dr t

dimensional word embeddings. Specially, we concentrate on the in-
fluence caused by lexical content of system responses in this work,
the influence caused by synthesized speech of the system response
will be further discussed in the future work.

Definition 1. Emotive states.We employ the numerical dimen-
sional Pleasure-Arousal-Dominance (PAD) [18] emotion model to
describe emotive state in this work: 1) Pleasure-Displeasure Scale
(P) measures human perceived level at pleasant or unpleasant; 2)
Arousal-Nonarousal Scale (A) measures human perceived level at
energized or soporific; 3) Dominance-Submissiveness Scale (D) rep-
resents the controlling and dominant versus controlled or submis-
sive by human perceiving. Considering the dominance (D) dimen-
sion in PAD is highly related to the expression of emotion for dialog
acts in spoken dialog interaction [32], the PAD model is adopted in
this work for better describing the user emotive states. For given ui
in a dialog turn, its emotive state is denoted as Ei =

{
EPi ,E

A
i ,E

D
i
}
,

where EPi , E
A
i , E

D
i are the quantized numerical levels at pleasure,

arousal, and dominance dimensions respectively.
Definition 2. Emotive state changes. The changes of emo-

tive state in this paper are defined as the difference of user’s emo-
tive PAD states in adjacent dialog turns. This definition is based
on two assumptions: 1) user emotion in one conversation is con-
tinuous; 2) the user emotive state changes are triggered by dia-
log system responses while external environment is stable in a
short period. For given contiguous user input utterance ui and
ui+1 labeled with Ei and Ei+1, we denote emotive state changes as
ECi =

{
ECP

i ,EC
A
i ,EC

D
i
}
, where ECP

i is calculated by (EPi+1 − EPi ),
ECA

i is calculated by (EAi+1 − EAi ), EC
D
i is calculated by (EDi+1 − EDi ).

Problem. For an given user input utterance and its corre-
sponding system response, automatically recognize the user
emotive state of the current user input utterance and infer
the emotive state change triggered by the system response.
In this work, the proposed multi-modal multi-task learning frame-
work is implemented to address the emotive state recognition task
and emotive state changes prediction task simultaneously:

{ui , ri } = {uai ,ut i , rt i } → {Ei ,ECi }

3 DATA AND OBSERVATIONS
Data Collection. Being a data-driven task, the data used in this
work is crucial. To ensure the reliability and reality of data, we
collected raw data with Sogou Voice Assistant, a leading automatic
speech dialog smart phone application in China. The collected raw
data contains 4,052,847 Mandarin utterances from 221,459 users,
the lexical information of each is provided by an automatic speech
recognition (ASR) system with 5.5% word error rate (WER).

Preprocessing. Three different types of interactions are in-
cluded in raw data: ‘search’, ‘chat’, and ‘others’ (‘others’ contains
interactions like application launching etc.). The proportion of these
three types of interactions are 48.62%, 34.65%, 16.73% respectively.
The responses of ‘search’ and ‘others’ are normally fixed text or
specific system operations, while the responses of ‘chat’ are auto-
matically generated text or speech. Concentrate on conversational

dialog system, interactions labeled with ‘chat’ are selected for fur-
ther processing. The selected data contains 1,404,399 user input
utterances, each utterance has one corresponding system response.
We assume utterances from the same user with a short interval
period, from seconds to half minute, can form an individual conver-
sation. In addition, as research on dynamic changes requires more
temporal information, conversations containing more than three
utterances are selected. Hence, we collected a data set containing
98,376 conversations, each with 4 to 49 utterances.

Labeling. We randomly selected 2,000 user input utterances
from the data set, and invited 3 human annotators to annotate these
utterances with ‘emotional’ or ‘neutral’. When annotators had op-
posite opinions, they stopped and had a discussion until they could
achieve an agreement; if could not, this utterance would be aban-
doned. As a result, 1,125 utterances are annotated as ‘emotional’,
and 875 utterances are annotated as ‘neutral’. While we expected
the conversations are more expressive than neutral, a simple deep
neural network (DNN) based emotion detection model is imple-
mented to further filter the data set. This model is trained to figure
out whether the input utterance is ‘neutral’ or ‘emotional’ as a
two-classification problem. Trained and tested on aforementioned
labeled data, the filter network achieves 76.79% Recall and 87.16%
Precision on the classification task. We then used this network to
automatically annotate the utterances to find out the conversations
with higher expression: all the utterances in such conversations are
labeled as ‘emotional’. In this way, 9,389 conversions with 52,064
utterances are selected.

For dimensional emotion annotating, the specification of labeling
strategy of PAD [14] emotion model is followed. 15 annotators (five
groups with each containing three annotators) and one expert
were invited to describe the emotion of utterances using a 15-term
simplified questionnaire [14]. Annotators were pre-trained for using
the PAD questionnaire and the expert was asked to randomly check
the annotations to ensure labeling quality. We finally annotated
1,124 conversation with 6,185 utterances, with 0.63 and 0.51 inter-
annotator agreement on emotive states and emotive state changes
respectively (elaborated in section 5.2 and Table.2).

Observations. We further analyzed the annotated data to in-
vestigate emotive state changes in interaction dialogs. The statis-
tical results of annotation are shown in Table.1. As can be seen,
for each discrete emotion category (i.e. angry(ANG), disgust(DIS),
happy(HAP), sad(SAD), relax(REL),weak(WEA) and neutral (NEU)),
the distribution of the annotated emotive state values confirms to
the assumption of the PAD emotion model as well as the discrete
emotion distribution in PAD emotional space as described in [14].
For example, the utterances with happy (HAP) emotion category
possess all positive annotated P,A andD values, while the utterances
with sad (SAD) emotion category are annotated with all negative
P,A and D values. These results confirm the validity and effective-
ness of our emotive state annotation procedures. The annotated
data can thus be used to evaluate the proposed framework.

Observation 1: Emotive state changes exist and are triggered by
responses. In dialog turns, user emotive states are changing dynam-
ically. As the example shown in Fig.2, user was in negative mood at
the beginning, but became positive with the influence of appropri-
ate affective system responses. In this case, system responses show



Table 1: Average PAD annotation values for different emo-
tions and the corresponding emotive state changes.

ANG DIS FEA HAP NEU SAD REL WEA
P -0.31 -0.28 -0.17 0.40 0.34 -0.26 0.33 0.41
A 0.47 -0.18 0.37 0.47 -0.15 -0.32 -0.12 0.42
D 0.48 0.41 -0.09 0.39 -0.17 -0.23 0.33 -0.11
ECP 0.11 0.06 0.08 -0.17 -0.11 0.10 -0.12 -0.21
ECA -0.10 0.20 -0.09 -0.12 0.18 0.24 0.25 -0.15
ECD -0.14 -0.09 0.15 -0.10 0.13 0.26 -0.07 0.17

Figure 2: An example of user emotive state changes in dialog
turns, the system responses had comforted user’s mood.

their effectiveness in comforting user. However, in some other case,
user was even infuriated by unsuitable system responses.

Observation 2: Emotive state changes are related to the current
emotive states. As Table.1 shows, for one specific emotion, the
emotive state changes are statistically opposite to current emotive
states, normally trending from emotional states to neutral. This
observation indicates users can relieve from negative emotion in the
interaction with automatic spoken dialog system, and also indicates
current dialog system is still lack in increasing and sustaining the
positive emotion of user.

Summarization.We find the user emotive state changes exist
in real-world human-computer interaction dialog scenarios, trig-
gered by system responses and related to the current states of
user emotion. These findings inspire us to introduce a multi-modal
multi-task framework to infer user emotive state changes condi-
tioned upon user input and system response in human-computer
communication dialog turns to further enhance user experiences.

4 METHODOLOGY
To infer user emotive state changes, following challenges are in-
volved: 1) how to produce robust representation of user input utter-
ances considering different modalities; 2) how to produce sentence-
level representation of system responses and exploit it in user emo-
tive state changes prediction; 3) how to model the dependency
between user current emotive states and emotive state changes.

To solve aforementioned challenges, we propose the usage of a
multi-modal multi-task learning framework to predict user emo-
tive state changes in dialog turns. As illustrated in Fig.3, the pro-
posed framework contains four components: 1) multi-modalities

fusion component to produce robust representation of user input
utterances using multi-task convolution fusion auto-encoder; 2)
sentence-level representation production component to compress
the system response using LSTM based recurrent auto-encoder; 3)
input-response fusion component to produce conditioned represen-
tation upon user input and system response; 4) multi-task learning
structured output layer (SOL) to infer user current emotive states
and emotive state changes simultaneously while modeling the de-
pendency between emotive states and emotive state changes.

Multi-modalities fusion. To fuse different but related modali-
ties extracted from user input utterance into one robust represen-
tation, we introduce the usage of multi-task learning convolution
fusion auto-encoder (MTCF AE). Inspired by [16], and developed
from CNN fusion model [7] and multi-task auto-encoder (MT AE)
[8],MTCF encoder in MTCF AE inherits the strong generalization
performance of conventional multi-task learning while integrating
signals at different layers through convolution and pooling.

This convolutional neutral networks based approach is con-
structed by stacking alternatively convolutional layers and pooling

Figure 3: Overall structure of the proposed framework. The
multi-modalities fusion component employs MTCF encoder
to produce a robust representation of user input utterance,
and the sentence-level representation production compo-
nent employs LSTMencoder to compress the system response,
the input-response component employed a convolution fu-
sion approach to fuse the representations produced from
user input utterance and system response, structured out-
put layer (SOL) is employed to infer user emotive states and
emotive state changes simultaneously.



layers. Each convolutional layer contains a pack of neurons process-
ing sequentially consecutive patches on input, i.e. on the temporal
dimension. Extracting at every position of input, each neuron pro-
duces one value to create a new signal referred to as feature map.
Pooling layers are implemented by applying statistical function, i.e.
average or maximum, on non-overlapping patches to reduce the
dimensionality of feature maps. By stacking several convolutional
and pooling layers, MTCF encoder can integrate different modal-
ities and reduce the time resolution upon the temporal features
extracted from user input utterances [15].

For acoustic features uai and aligned lexical features uti ex-
tracted from utterance ui , the first step inMTCF encoder is to pro-
cess frame-level concatenation:

ucati = Concat(uai ,uti ) (1)

Convolution layer is then convolved on the concatenated se-
quences with filters f and biases b:

hk = φ(
∑
l=L

hl ⊕ f k + bk ) (2)

where hk is the latent representation of the k-th feature map of the
current layer, φ is Rectified Linear Unit (ReLU) activation function,
hl is l-th feature map of feature maps group L of upper layer or l-th
channel of input ucati with total L channels for the first convolu-
tional layer, ⊕ denotes the convolution operation. Max-pooling is
used as pooling layer to reduce the time resolution. The output of
top pooling layer is used as the fusion representation Ri of input
utterance ui .

We employ the unsupervised multi-task learning auto-encoder
structure to train theMTCF encoder [8] as shown in Fig.4. In train-
ing, the original input features from differentmodalities are encoded
byMTCF encoder and then be reconstructed byMTCFdecoder . Con-
structed with stacked upsampling layers and deconvolution layers,
theMTCFdecoder firstly restore the time resolution via upsampling
and then reconstruct the input signals via deconvolution opera-
tions. By further employing multi-task training style, two types of
reconstruction tasks are performed in training: 1) self-domain recon-
struction of features and 2) between-domain reconstruction among
modalities. The self-domain reconstruction ensures the informa-
tion is maintained in encoding process, and the between-domain
reconstruction guarantees the correlation information between
modalities being further considered in encoding. These two types
can thus helpMTCF encoder generating a robust fusion representa-
tion of acoustic features and aligned lexical features.

Figure 4: The framework of MTCF AE.

Sentence-level representation production. As the user in
human-computer interaction usually reacts to the system responses
based on the understanding of the entire sentence, the framework
should capture factors affecting user emotive states at the sentence-
level of the system responses. A LSTM based recurrent auto-encoder
[28] is employed to produce the sentence-level representation of sys-
tem responses. Similar to sequence-to-sequence generation tasks,
this structure is implemented as shown in Fig.5: 1) converting the
system response into a sentence-level vector representation via
LSTMencoder , 2) decoding the compressed vector representation to
an output string of words via LSTMdecoder . Two separate LSTMs
are implemented as encoder and decoder without considering sen-
tence structures.

For lexical features rti of given system response ri with Ki
words, LSTMencoder computes the hidden vector sequence h =
(h1,h2, ...,hKi ) from s = 1 to Ki with following equations:

fs = σ (Wf rti,s +Uf hs−1 + bf ) (3)
is = σ (Wirti,s +Uihs−1 + bi ) (4)
os = σ (Worti,s +Uohs−1 + bo ) (5)
cs = fs ◦ cs−1 + is ◦ tanh(Wcrti,s +Uchs−1 + bc ) (6)
hs = os ◦ tanh(cs ) (7)

where σ is the Sigmoid activation function, f , i , o and c are the input
gate, forget gate, output gate and memory cell activation vectors
respectively,W , U and b items are the weight matrices and bias
vectors of each gate. The hidden vector hKi is used as the sentence-
level vector representation Si of system response ri . In decoding,
Si is used to replacing rti,s , from s = 1 to Ki , in Eq.(3)-(6), to
reconstruct the original rti .

Input-response fusion. As user emotive state changes are
based on user current input and conditioned upon system response,
we propose the use of a convolution fusion (CF) component to
integrate information from fused representation of user input ut-
terances and sentence-level representation of system responses.

To fuse representation Ri of utterance ui and sentence-level
vector representation Si of corresponding system response ri , the
concatenation is firstly processed at frame-level from t = 1 to T in
Ri , where T is the time step length of Ri :

Ct
i = Concat(R

t
i , Si ) (8)

the fused representation FSi is then calculated following Eq.(2).
Emotive states recognition.With aforementioned components,

a baseline emotive states recognition model can be implemented:
it employs pre-trainedMTCFencoder to produce fusion represen-
tation Ri of input utterance ui , and then uses stacked non-linear

Figure 5: The framework of LSTM recurrent auto-encoder.



full-connection hidden layers {hE1 ,h
E
2 , ...,h

E
L } for wrapping to pre-

dict the PAD value, the first non-linear hidden layer and the emotion
PAD prediction output is thus computed as:

hE1 = σ (WRihE1
Ri + b

E
1 ) (9)

OE = σE (h
E
L ) (10)

whereσ ,W ,b,σE ,OE are the non-linear activation function, weights
matrix, bias, linear output function and predicted emotion PAD
state values Ei respectively.

Emotive state changes prediction.As user emotive state changes
are highly related to user current emotive states, we propose the use
of multi-task learning structured output layer (SOL) to simultane-
ously infer user emotive states Ei and emotive state changes ECi . In
conventional multi-task learning framework, emotive states recog-
nition task and emotive state changes prediction task share the
hiddens of aforementioned components. For emotive state changes
prediction task, additional non-linear full-connection hidden layers
{hEC1 ,h

EC
2 , ...,h

EC
L } using input-response fusion result FSi as input

are employed. The current emotive states is calculated following
Eq.(9) and emotion changes is computed as:

hEC1 = σ (WFSihEC1
FSi + b

EC
1 ) (11)

OEC = σEC (h
EC
L ) (12)

where OEC is the predicted emotive state changes ECi .
Based on observed relationship between user emotive states and

corresponding emotive state changes, SOL is suggested in this work
for explicitly modeling the dependency of the primary emotive state
changes prediction task on the auxiliary emotive states recognition
task. This is realized by feeding the emotive states recognition
task’s hidden layer output hE through an activation function Ψ(·),
such as Tanh or ReLU, to model the correlation between the two
tasks before being augmented to the hidden layer hEC1 while the
weight matrix C used to connect the two tasks is applied. The first
layer hEC1 of the hidden layers is thus modified as,

hEC1 = σ (WFSihEC1
FSi + b

EC
1 + CΨ(hEL )) (13)

Precursors of the same SOL structure have been previously stud-
ied for recurrent neural network language modeling for predicting
morphologically decomposed stem and suffix features [2, 29].

In common with the conventional multi-task learning frame-
work, models with SOL can be trained by minimizing a global
cost function expressed as a weighted sum of the two task specific
separate error costs. This is given by

Fд = αFEC + (1 − α)FE (14)

where FEC and FE are the costs generated by the main task (emotive
state changes prediction) and the auxiliary task (emotive states
recognition) computed as mean squared errors (MSE), and α is a
tunable weighting parameter adjusting the contributions from the
main and auxiliary tasks.

Using SOL as the output layer inherits the strong generalization
performance and robustness of conventional multi-task learning
facilitated by shared hidden layers and joint training over multiple
tasks [5]. The use of structured output layer further allows both
the regularization properties of the comparatively simpler auxiliary

task of emotive states recognition and its direct effect on the primary
emotive state changes prediction task to be fully exploited.

5 EXPERIMENTS AND DISCUSSION
The proposed framework is evaluated in two experiments. In the
first evaluation, we compare the proposed framework with other
state-of-the-art emotion recognition approaches on the tasks of
emotive states recognition and emotive state changes prediction
using the public emotional database IEMOCAP [4] and the collected
realistic conversational dialogs data set (RCD). In the second exper-
iment, we investigate the performance as well as the contribution
of individual components in the proposed framework.

5.1 Experimental Setup
Data set. Following aforementioned construction process, we es-
tablished a realistic speech interaction benchmark data set RCD
containing unlabeled 9,389 conversions with 52,064 utterances and
corresponding system responses. We manually annotated 1,124
conversations with 6,185 utterances from the data set following
PAD emotion model. The distribution as well as the discrete degree
of annotated emotive states are satisfied with the assumption in
[14] as elaborated in section 3.

The IEMOCAP database contains 12 hours of audio-visual con-
versations in English, categorized according to the emotion: anger,
happiness, sadness,neutral, excitement, frustration, fear, surprise,
and others. We form a four-class emotion classification dataset
containing {happy,anдry, sad,neutral} for experiments following
the experimental setup of state-of-the-art approaches, thus 5,531
utterances are involved.

Features.Acoustic features are extracted from raw user input ut-
terances using LibROSA [17] speech toolkit with 25msec framewin-
dow size and 10msec frame intervals. Totally, 41-dimensional frame-
level acoustic features are extracted, containing 39-dimensional
Mel-frequency cepstral coefficients (MFCCs), 1-dimensional loga-
rithmic fundamental frequency (log F0), and 1-dimensional energy.
Lexical features are extracted from both user input utterances and
system responses through two steps: 1) word segmentation on ut-
terances with a Chinese lexical analyzer Thulac Tool [27]; 2) getting
300-dimensional vector representation of words using Word2Vec
[19] model. All utterances and responses from raw data, about 4
million utterances and 1.4 million responses, are used to train the
Word2Vec model. For IEMOCAP based experiments, the Word2Vec
toolkit proposed in [19] is used to represent the lexical information
of utterances. For features extracted from user input utterances,
frame-level alignment between acoustic features and lexical fea-
tures is processed with an HMM-based approach. Input features
were normalized to the range of [-0.99, 0.99] and targeted labels, in-
cluding emotive states and emotive state changes, were normalized
to zero mean and unit variance.

Construction setting.MTCFencoder contains 4 convolutional
layers, each of 32 1-D convolution filters with a window length of 3
and stride of 1. Each convolutional layer is followed with a 1-D max-
pooling layer, which is applied with a stride of 2. LSTMencoder con-
tains a stack of 2 uni-directional LSTM layers with 64 units. MTCF
AE is pre-trained using all the unlabeled user input utterances and
LSTM RAE is pre-trained using all the system responses in raw



Table 2: The performance of state-of-the-art approaches and the proposed approach on IEMOCAP and RCD databases.
ER:emotive states recognition. ECP: emotive state changes prediction. UA, the higher the better. MAE, the lower the better.
CCC, the higher the better. (*: This approach used acoustic features only. **:System 2(S2) in section 5.3 for emotive states
recognition withMTCFencoder employed. ***: System 6 (S6) in section 5.3 with all components employed)

Method IEMOCAP ER (UA,%) RCD ER (MAE) RCD ER (CCC) RCD ECP (MAE) RCD ECP (CCC)
[APSIPA ASC, 2012] SVM 67.4 0.37 0.31 0.42 0.01

[ICASSP, 2015] SVM 69.2 0.33 0.35 0.41 0.01
[ICDM, 2016] CNN 65.1 0.35 0.34 0.36 0.05

[ICASSP, 2017]* RNN 58.8 0.37 0.29 0.44 0.01
[ACL, 2017] LSTM 75.6 0.30 0.44 0.37 0.06

The proposed** MTCFencoder 74.8 0.31 0.42 - -
The proposed*** Hybrid - 0.32 0.41 0.28 0.31

Inter-annotator agreement - - 0.63 - 0.51

data. The input-response fusion component has the same structure
asMTCFencoder . We use Tanh as activation functionψ in Eq.(13)
and α = 0.6 in Eq.(14) in the proposed system.

Implementation and training. As a general setting, we utilize
stochastic optimization with a mini-batch size of 128 samples, Adam
[10] algorithm is employed as optimizer with an initial learning rate
at 10−4 with 4 ∗ 10−6 decay over each update. The proposed frame-
work and all the comparisons are implemented using Keras [6] deep
learning framework with Tensorflow [1] as backend. Mean squared
errors (MSE) is used as the loss function of emotive states recog-
nition task and emotive state changes prediction task. For models
with LSTM components, back-propagation through time [31] is em-
ployed for training. The performance of implemented approaches
are assessed by mean absolute error (MAE) and lin’s concordance
correlation coefficient (CCC) [12]. All the experimental results re-
ported in this paper were based on 5-fold cross validation[11].

5.2 Comparison to state-of-the-art
In this experiment, we firstly evaluate the emotive states recog-
nition model in the proposed framework on IEMOCAP database
comparing to state-of-the-art approaches. We also employ these
approaches to compare with the proposed framework using RCD
dataset on both emotive states recognition task and emotive state
changes prediction task.

Specially, when evaluated on IEMOCAP database, the loss func-
tion of the proposed emotive states recognition model is changed to
cross-entropy. When evaluated on RCD, support vector regression
(SVR) [3] is employed in SVM based approaches. For inferring user
emotive state changes, we simply change the prediction target of
state-of-the-art approaches from emotive states labels to emotive
state changes labels without modifying any structure.

Comparisonmethods.We collected state-of-the-art approaches
with reported experimental result on IEMOCAP to compare with
the proposed framework:

(1) [APSIPA ASC, 2012] using support vector machine (SVM)
and decision trees based classifiers to address the sentence-
level multi-modal emotion recognition problem [24].

(2) [ICASSP, 2015] using both early fusion and late fusion for
sentence-level acoustic and lexical features to recognize emo-
tion with SVM based classifier [9].

(3) [ICDM, 2016] using CNN to extract features from multi-
modalities and a multiple kernel learning classifier to recog-
nize emotion[22].

(4) [ICASSP, 2017] using recurrent neural network (RNN) and
local attention based feature pooling strategy to produce
emotionally relevant features for emotion recognition [20].

(5) [ACL, 2017] using a LSTM based model to capture contextual
information between utterance-level features to recognize
emotion [21].

The evaluation metrics employed for IEMOCAP based exper-
iments is unweighted accuracy (UA), the mean of accuracies for
different emotion categories [24], that is commonly used in afore-
mentioned state-of-the-art approaches.

Experiment result. As shown in Table.2, the proposed frame-
work has achieved an on par performance with state-of-the-art
approaches on emotive states recognition (ER) task when evalu-
ated with IEMOCAP and RCD databases. For emotive state changes
prediction (ECP) task, state-of-the-art approaches achieved limited
performance, while the proposed approach gained significant im-
provement. Even for humans, the perception of emotive states and
changes are unstable, which can be validated by CCC, the inter-
annotator agreement on emotive states and emotive state changes
are 0.63 and 0.51, respectively.

5.3 Contribution of individual components
Comparison systems. In this experiment, we evaluate the perfor-
mance as well as the contribution of each individual component
employed in the framework. Five comparison systems with differ-
ent combination of components are implemented to compare with
the proposed framework. Specially, components employed in the
comparisons have the same structure with the proposed frame-
work. However, the numbers of filters/units of convolution/dense
layers are proportionally balanced to ensure the total parameters
employed by the models are on par with the proposed framework.

(1) system 1 (S1), baseline emotive states recognition model,
features extracted from difference modalities are simply con-
catenated as input for the system.

(2) system 2 (S2),MTCFencoder is employed to fuse modalities
from user input utterances for emotive states recognition;



Table 3: Experimental results with different combination of components. CF: convolution fusion.

Parameters Modalities
Fusion

System response
Representation

Input-response
Fusion

Multi-task
Learning

EPAD

MAE
EPAD

CCC
ECPAD

MAE
ECPAD

CCC
S1 6.46M Concatenation NO NO NO 0.38 0.11 N/A N/A
S2 6.47M MTCFencoder NO NO NO 0.31 0.42 N/A N/A
S3 6.53M MTCFencoder NO NO NO N/A N/A 0.37 0.04
S4 6.71M MTCFencoder LSTMencoder CF NO N/A N/A 0.32 0.11
S5 6.21M MTCFencoder LSTMencoder CF YES 0.32 0.40 0.29 0.22
S6 6.31M MTCFencoder LSTMencoder CF SOL 0.32 0.41 0.28 0.31

(3) system 3 (S3), baseline single-task learning emotive state
changes prediction model using MTCFencoder for integrat-
ing modalities from user input utterances only (sharing the
same structure with S2);

(4) system 4 (S4), single-task learning emotive state changes pre-
diction model employing LSTMencoder to produce sentence-
level representation of system response and input-response
fusion component (CF) to integrate information from both
user input utterances and system response;

(5) system 5 (S5), conventional multi-task learning method in-
ferring user emotive states and emotive state changes simul-
taneously;

(6) system 6 (S6), the proposed multi-task learning model with
structured output layer (SOL) where the primary user emo-
tive state changes prediction task is conditioned on the aux-
iliary emotive states recognition task.

Experimental result. As illustrated in Table.3, system 1 (S1)
has achieved a limited performance in emotive states recognition
task. By using MTCFencoder as the multi-modalities fusion com-
ponent in S2, the performance has gained significant improvement
from 0.38 to 0.31 (-18.4%) in MAE and from 0.11 to 0.42 (+281%)
in CCC on emotive states recognition task. When targeting on
emotive state changes prediction task, S3 has achieved limited per-
formance. By using LSTMencoder as sentence-level representation
production component for system response and input-response
component (CF) to consider information from both user input and
system response, S4 has gained an improvement from 0.37 to 0.32
(-13.5%) in MAE and from 0.04 to 0.11 (+175%) in CCC on emotive
state changes prediction task. By modifying to multi-task learning
style, S5 achieves appropriate performance in emotive state changes
prediction task, from 0.32 to 0.29 (-9.3%) in MAE and from 0.11 to
0.22 (+100%) in CCC. By employing SOL, S6 has gained a further
improvement comparing to S5, from 0.29 to 0.28 (-3.5%) in MAE
and from 0.22 to 0.31 (+40%) in CCC.

5.4 Discussion
As shown in the experimental results, evaluated with the realistic
interaction data, the proposed framework has outperformed state-
of-the-art approaches on user emotive state changes inferring task.
Comparing to state-of-the-art approaches, such performance gains
of the proposed framework come from the following aspects:

(1) MTCFencoder is employed to fuse the acoustic and lexical
features from user input utterances, which can improve the

performance of emotive states recognition and provide ro-
bust representation of user input utterances for following
emotive state changes prediction.

(2) Sentence-level representation of system responses is gen-
erated by LSTMencoder , and further fused with the repre-
sentation of user input using convolution fusion component.
The combination of these components can help the proposed
framework to infer user emotive changes considering both
user input utterances and the influence of system responses.
Experimental results have indicated the importance and ef-
fectiveness of these components.

(3) With the use of structure output layer (SOL), the proposed
framework can utilize the dependency of user current emo-
tive states and possible emotive state changes in inference,
which can further improve the overall performance of the
proposed framework.

6 CONCLUSION
To figure out the emotive state changes caused by responses in auto-
matic speech dialog systems, we presented a multi-modal multi-task
learning framework to infer user emotive states and emotive state
changes simultaneously. Multi-task learning convolution fusion
auto-encoder is applied to fuse the acoustic and textual features to
produce a robust representation of user’s input. Long-short term
memory recurrent auto-encoder is employed to produce sentence-
level representation of system responses to better capture factors
affecting user emotive states. Multi-task learned structured output
layer is adopted to model the dependency of user emotive state
changes upon the user emotive states in current dialog turn. Ex-
perimental results on public emotional database IEMOCAP and
real-world interaction database have illustrated the effectiveness of
the proposed framework in predicting user emotive state changes.
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