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Abstract
Emphasis detection is important for user intention under-

standing in human-computer interaction scenario. Techniques
have been developed to detect the emphatic words in speech, but
challenges still exist in Voice Dialogue Applications (VDAs):
the tremendous non-specific speakers and their various expres-
sions. In this work, we present a novel approach to automat-
ically detect emphasis in VDAs by using multi-channel con-
volutional bi-directional long short-term memory neural net-
works (MC-BLSTM), which can learn various expressions of
large amounts of speakers and long span temporal dependencies
across speech trajectories. In particular, we first use a multi-
channel convolutional component in the proposed approach to
extract high-level representation of input acoustic features for
emphasis detection. The experimental results on a 3400 real-
world dataset collected from Sogou1 Voice Assistant outper-
form current state-of-the-art baseline systems (+6.2% in terms
of F1-measure on average).
Index Terms: emphasis detection, human-computer interac-
tion, voice dialogue applications, multi-channel convolutional
bi-directional long short-term memory neural networks

1. Introduction
With the rapid development of technology, the Voice Dialogue
Applications (Siri2, Alexa3, Cortana4, etc.) have gained great
interest recently [1]. According to the statistics from Nuance5,
about 73% of people prefer improved communication experi-
ences through the smarter technology, which can help them un-
derstand the dialogue intention better. Emphasis is an impor-
tant factor to convey speaker’s attitudes, intentions and emo-
tions [2]. Detecting emphasis can help other interlocutors cap-
ture the important paralinguistic information of utterance in di-
alogue [3]. It has also attracted considerable attention in the
past few years due to their potential application in the field of
speech-to-speech translation [4, 5], emphatic speech synthesis
[6], automatic prosodic event detection [7, 8], human-computer
interaction, etc.

Previous researches on emphasis detection have focused
on the acoustic features and models perspectives: Ferrer et

1http://yy.sogou.com
2https://www.apple.com/cn/ios/siri/
3https://developer.amazon.com/alexa/
4http://www.microsoft.com/zh-cn/windows/cortana/
5https://www.nuance.com/omni-channel-customer-

engagement/voice-and-ivr/conversational-ivr.html

al. [9] used filtered energy features to detect pitch accents.
Meng et al. [10] considered this task as a classification prob-
lem and the emphasis is divided into six classes. Schnall et al.
[11] used support vector machines (SVM) and conditional ran-
dom fields (CRF) to predict word prominence in spontaneous
speech. Cernak et al. [12] used a probalilistic amplitude de-
modulation (PAD) method for prosodic event detection. Cer-
nak et al. [13] devised a sound pattern matching method for
automatic prosodic event detection. Do et al. [14] used lin-
ear regression HSMMs method (LR-HSMMs) for preserving
word-level emphasis. Ning et al. [15] propose a multilin-
gual BLSTM model to detect emphasis. Although the meth-
ods have shown significant performance improvements for em-
phasis detection, it is still be challenged in real-world voice
dialogue applications(VDAs) attributed to three main factors:
The large amounts of non-specific speakers, various expression
and the long span temporal information including long-distance
dependencies across speech trajectories. There are tremen-
dous amounts of users in VDAs, which are non-specific speak-
ers with different gender, age and geographical characteristics,
bringing in a great diversity of users dialects and expression
preferences. This diversity increases the difficulty of inferring
users emphasis.

To solve this problem, we introduce a novel approach to
detect emphasis in VDAs by using multi-channel convolutional
bi-directional long short-term memory neural networks (MC-
BLSTM), which can learn tremendous non-specific speakers’
expressions of emphasis and long span temporal dependencies
across speech trajectories (shown in Figure 1). In particular, we
employ a multi-channel convolutional neural network compo-
nent in the proposed approach to extract high-level representa-
tion of acoustic features (fundamental frequency (F0), mel fre-
quency cepstral coefficients (MFCCs), energy, duration and po-
sition of frame (POF) ). Bi-directional long short-term memory
neural network is recurrent neural network which is capable of
storing information over extended time intervals. Our approach
results on a 3400 real-world dataset collected from Sogou Voice
Assistant outperform current state-of-the-art baseline systems
(+6.2% in terms of F1-measure [16] on average).

The organization of this paper is as follows: the multi-
channel convolutional bi-directional long short-term memory
neural networks (MC-BLSTM) architectures are described in
section 2. To evaluate the performance of our approach, exper-
iments were conducted. The results and analysis are presented
in Section 3. Finally, Section 4 gives a summary and conclusion
of this work.



Figure 1: A graphical overview of our emphasis detection training line: The rectangles in the input image sequence shows the different
acoustic features. Here we show the extraction of fundamental frequency (F0), MFCCs and energy. Representation extracted from
input features is then used as input for BLSTM network for further prediction.

2. Methodology
We propose a multi-channel convolutional bi-directional long
short-term memory neural networks (MC-BLSTM) model to
detect emphasis in VDAs, which can learn various expres-
sions of tremendous non-specific speakers and long span tem-
poral dependencies across speech trajectories[17]. In particu-
lar, each individual has his own characteristics, thus we employ
a multi-channel convolutional neural network component to ex-
tract high-level representation from input features for enhancing
the performance of the proposed approach.

2.1. Multi-channel convolutional neural network compo-
nent

Each of the acoustic features (F0, energy, MFCCs) has its spe-
cific representation in VDAs. For example, [4] has compared
the difference between the duration and energy features in em-
phasis prosodic. Therefore, we employ a multi-channel con-
volutional neural network component to deal with acoustic fea-
tures (F0, energy, MFCCs) respectively. The overall structure of
multi-channel convolutional neural network component [18, 19]
is illustrated in Figure 2.

Let si be the d-dimensional fundamental frequency (F0)
feature for the i-th frame in a sentence, s ∈ RL×d denote the
sentence with L frames, k be the lenth of filter vector m ∈
Rk×k. To extract k-gram features, we design a window vector
w ∈ Rk×k with k consecutive vectors.

The idea behind convolution is to take the element-wise
multiplication of filter vector m with each window vector w
in the sentence s to obtain a feature map y ∈ RL×d, where
each element y is produced as:

y = f(w ◦m+ b) (1)

where ◦ is a convolutional operator, b respectively denotes bias
term and f is nonlinear transformation function. In our case, we
follow the work in [20] to choose ReLU as the nonlinear func-
tion. We use multiple filter vectors to generate different feature
maps and then concatenate them together to produce new fea-
tures. Let n be the numbers of filter vectors, we have:

Y = [y1;y2; ...;yn] (2)

Semicolons represent column concatenation and yi is the fea-
ture map generated by the i-th filter. Each row of Y ∈ RL×d

is the new higher-level feature representation. Similarly, we
perform convolution on energy and MFCCs features. Because
the F0 and the energy are one-dimensional feature, while the

Figure 2: The structure of multi-channel convolutional bi-
directional Long Short-Term Memory Neural Networks.

MFCCs is a matrix feature, the 1D convolutional processing is
used for the F0 and the energy and the 2D convolutional pro-
cessing is used for the MFCCs respectively. Different from Y,
E and M denotes the the new features of energy and MFCCs
instead of Y. All the features are merged together to generate C
as followes:

C = concat[Y,E,M] (3)

The output hiddens C is then feeded to the BLSTM component
[21, 19] for further computation directly.

2.2. Bi-directional long short-term memory neural network

In order to learn long span temporal information, recurrent
neural network architecture with bi-directional long short-term
memory units is then employed in the proposed framework.

Given an input sequence x = (x1, . . . , xT ), Recurrent
Neural Network (RNN) computes the hidden state vector se-
quence h = (h1, . . . , hT ) and outputs vector sequence y =
(y1, . . . , yT ) from t = 1 to T by iterating the following equa-
tions:

ht = H(Wxhxt +Whhht−1 + bh) (4)

yt = Whyht + by (5)

where H is activation function, W is the weight matrix(e.g.,
Why is the hidden-output weight vectors), b is the bias vectors,
bh is the bias vector for hidden state vector and by is the bias
vector for output vector.

Furthermore, in order to make full use of speech sequences
in the forward and backward directions, Bidirectional RNN[22]
separates the hidden layer into forward frame sequence

−→
h

and backward frame sequence
←−
h . The iterative process is as
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H is usually a sigmoid or hyperbolic tangent function in the
conventional RNN models[24], which leads to the limitations
of storing past and future information in speech. For bidirec-
tional long short-term memory (BLSTM)[25], which build a
memory cell inside, can overcome the problems in conventional
models. The H of BLSTM is implemented with the following
functions[26]:

it = σ(Wxixt +Whiht−1+Wcict−1 + bi) (9)

ft = σ(Wxfxt +Whf t−1+Wcfct−1 + bf ) (10)

ct = ftct−1 + ittanh(Wxcxt +Whcht−1 + bc) (11)

ot = σ(Wx0xt +Whoht−1+Wcoct + bo) (12)

ht = ottanh(ct) (13)

Combining the advantages of Multi-channel Convolutional
Neural Network component and BLSTM, which can extract lo-
cality and instability features[19, 27] and make the best of long-
range context in both forward and backward directions.

3. Experiments
3.1. Corpus

We evaluated our proposed method on the corpus of voice
data from Sogou Voice Assistant containing 12,000 utterances
recorded by 706 users. We randomly selected 3,400 utterances
from the database and labeled the emphasis for each utterance.
The estimated word-level emphasis is then classified into la-
bels of 0 and 1 indicating normal and emphasized words. The
corpus is labeled by three well-trained annotators. Labels are
regarded as emphasis only when three inter-annotator reach an
agreement. If they are controversial or ambiguous about labels,
utterance will be labeled as ambiguous or discarded. Finally,
3,093 utterances are labeled emphasis as frame level. Each of
the utterances contains one or more emphatic words. These
emphatic words are located at different positions in sentences.
The emphasis distributions of these utterances are: emphasis:
17.03%, normal: 82.97%. An example of the label sentences
are shown in Figure 3.

3.2. Features

In this experiment, voice segments of each utterance are sam-
pled with 5ms frame shift and 25ms frame length. Numerical
features are normalized to the range of (0, 1]. The acoustic fea-
tures we used are extracted by librosa [28], including the fol-
lowing features:

Figure 3: An example of labels in English and Chinese sen-
tences from the VDAs.

• lf0: Log F0 (lf0) feature and related features(mean, min-
imum, maximum, and the range of lf0 ).

• Energy: Energy feature and related features (mean, min-
imum, maximum, and the range of energy).

• MFCCs: MFCCs (12-demensional) features, delta
(12-demensional) and acceleration (12-demensional) of
MFCCs features. These 36 MFCCs features have been
normalization for acoustic models.

• Duration: The duration of a word.

• Position of Frame (PoF): The position of the syllables
in the sentence, the position of the frame in syllable and
the position of the frame in sentence.

3.3. Experimental setup

3.3.1. Comparison methods

We compared the performance of emphasis detection with some
well-known machine learning methods, including support vec-
tor machine (SVM) [29], bayesian network (BN)[30], deep neu-
ral network (DNN) and convolutional neural network (CNN).
We also designed some kinds of LSTM models for comparison,
bi-directional long short-term memory (BLSTM)[15], convolu-
tional bidirectional long short-term memory (C-BLSTM)[19],
the proposed model of the multi-channel convolutional bi-
directional long short-term memory neural networks(MC-
DBLSTM).

3.3.2. Network setup

In implementation of comparisons, we employ four convolu-
tional layers for each CNN based component: for F0 and en-
ergy processing, the filters employed in the 1D convolutional
layers are [32, 32, 16, 1] respectively; for MFCC processing,
the filters employed in the 2D convolutional layers are [64, 128,
32, 1]. Specially, the kernel size and stride of the proposed
1D convolutional component are 3 and 1, while in 2D convo-
lutional component are 3 × 3 and 1 × 1, respectively. ReLU
was applied as the activation function. In BLSTM component,
one hidden layer contains one forward LSTM layer and one
backward LSTM layer [31] with 64 units. Specially, for LSTM
based comparisons, the number of LSTM blocks are expanded
to match the similar scale. As the convolution layer requires
fixed-length input, the maxlen of input sentence is set to be
2000 frames after statistics analysis of the dataset. For sen-
tences with fewer frames, zero padding zero is applied.

3.3.3. Evaluation metrics

In all the experiments, we evaluate the performance in terms of
F1-measure[32, 11], Precision, Recall. The data corpora [33]
are split by train:val:test = 8:1:1.

3.4. Experimental results

3.4.1. Performance Comparision

We selected six models as baseline to compare the performance
of emphasis detection: BN, DNN, CNN, LSTM, BLSTM, C-
BLSTM, MC-BLSTM. Table 1 shows the results. The proposed
model outperforms all the baseline methods: +23.8% compared
with BN, +22.3% compared with DNN, +20.7% compared with
CNN, +17.5% compared with LSTM, +12.6% compared with
BLSTM, and +6.2% compared with C-BLSTM. By the results
of several comparisons, we can see (in terms of F1-measure),



Table 1: The Precision, Recall and F1-Measure in different
models.

Method Precision Recall F1-measure
BN 0.462 0.272 0.343

DNN 0.391 0.330 0.358
CNN 0.412 0.342 0.374

LSTM 0.463 0.313 0.406
BLSTM 0.457 0.468 0.455

C-BLSTM 0.481 0.562 0.519
MC-BLSTM 0.520 0.658 0.581

Figure 4: different acoustics features of emphasis detection.

the MC-BLSTM model is capable of learning the tremendous
speaker-independent representation of emphasis and and long
span temporal dependencies in VDAs. As shown in Table 1,
we find that the novel method has the best performance. These
proof that our proposed MC-BLSTM method does have an ef-
fective impact on the real-world voice dataset. Moreover, it ver-
ifies that the multi-channel convolutional component is more
powerful to extract high-level representation of input acoustic
features.

To demonstrate the comparability and the adaptability of
our method, we also report experimental results on previously
examined Database[2]. As shown in Table 1, the accuracy
reaches 0.581, showing +12.6% improvement compared with
[15], +23.8% improvement compared with[30], indicating that
our method still shows advantages on the acted database and
utterances of other language.

3.4.2. Feature contribution analysis

We validate that F0, energy(E), MFCCs, duration and PoF are
more powerful features to estimate emphasis. As we can see in
the Figure 4, the performance of ’lf0 + energy + MFCCs (12)’
features is better than ’lf0 + energy + MFCCs (36)’. We con-
clude that a large amount of redundant information ( such as the
delta and acceleration MFCCs features) will bring interference
to the detection and reduce the recognition for the emphasis. In
addition, location (PoF) features also play an important role in
emphasis detection.

3.4.3. Scalability

As shown in Figure 5, with the increase of the amount of train-
ing data, the performance tends to be stable and the trend of
growth is slow. With the increase of the amount of data, F1-
score performance with rapid ascension, but when the number
of data achieve 500, performance growth slowing. As the data
volume increases to 2000, this trend remains the same. So we

Figure 5: the number of emphasis detection datasets and the
number of lstm memory blocks.

Figure 6: the number of convolutional layers and filters.

choose 500 as the main test data quantity of the data.

3.4.4. Parameter sensitivity analysis

We compared the effects of different numbers of LSTM mem-
ory blocks, multi-channel convolutional layers and convolu-
tional filters, as shown in Figure 5 and Figure 6. The results
of the experiment are as follows: 1) The performance reached
the highest performance when the number of LSTM memory
blocks is 64. With the increase of the number of the blocks, the
performance decreased. Therefore, we choose 64 as the number
of LSTM memory blocks in the experiments; 2) The four and
five convolutional layers both show good performances in em-
phasis detection. However, the four layer networks reduces the
time consumption compared to the five layer networks, so we
choose the four convolutional layers as the experimental setup;
3) For the convolutional filters (first layer of F0), the perfor-
mance reached the highest when the number is 32. Therefore,
we choose 32 as the number of filters in the experiments. Other
parameters are shown in section 3.3.

4. Conclusions

In this paper, we proposed a multi-channel convolutional bi-
directional long short-term memory neural networks (MC-
BLSTM) which learns various expressions of the tremen-
dous non-specific speakers and long span temporal dependen-
cies across speech trajectories in Voice Dialogue Applications
(VDAs). In particular, we employ a multi-channel convolu-
tional component in the proposed approach to extract high-level
representation of input features. The experimental results on a
3400 real-world dataset collected from Sogou Voice Assistant
outperform current state-of-the-art baseline systems (+6.2% in
terms of F1-measure on average).
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