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Abstract—Voice Dialogue Applications(VDAs) increase popu-
larity nowadays. As the same sentence expressed with different
emotion may convey different meanings, inferring emotion from
users’ queries can help give a more humanized response for
VDAs. However, the large-scale Internet voice data involving a
tremendous amount of users, bring in a great diversity of users’
dialects and expression preferences. Therefore, the traditional
speech emotion recognition methods mainly targeting at acted
corpora cannot handle the massive and diverse data effectively.
In this paper, we propose a semi-supervised Emotion-oriented
Bimodal Deep Autoencoder (EBDA) to infer emotion from large-
scale Internet voice data. Specifically, as the previous research
mainly focuses on acoustic features only, we utilize EBDA to
fully integrate both acoustic and textual features. Meanwhile,
to employ large-scale unlabeled data to enhance the classifi-
cation performance, we adopt a semi-supervised strategy. The
experimental results on 6 emotion categories based on a dataset
collected from Sogou Voice Assistant 1 containing 7.5 million
utterances outperform several alternative baselines (+10.18% in
terms of F1 on average). Finally, we show some interesting case
studies to further demonstrate the practicability of our model.

Index Terms—Emotion, Internet Voice Data, Bimodal Deep
Autoencoder

I. INTRODUCTION

The increasing popularity of Voice Dialogue Applica-
tions(VDAs), such as Siri 2, brings great convenience to
our daily life. As we all know, the same words said in
different emotion can convey quite different messages. If we
can infer emotion from these large-scale Internet voice data

*Corresponding author: J. Jia (jjia@mail.tsinghua.edu.cn)
1http://yy.sogou.com
2http://www.apple.com/ios/siri/

of users’ queries in VADs, it would assist to understand the
true meaning of users as well as provide more humanized
responses.

However, fulfilling the task is not a trivial issue. As for
speech emotion recognition, many previous works on feature
selection and learning methods have been done. [1] propose
to use phase-based features to build up such an emotion
recognition system. And [2] introduce a Boosted-GMM al-
gorithm which boost the emotion recognition rates effectively
and significantly. However, these works are primarily focused
on acoustic features only. Besides, done on corpora data
(IEMOCAP database [3], etc.), these works have limited and
easily labeled benchmark data. Although latest work [4], [5],
[6] focus on proposing solutions to infer emotion from large-
scale Internet voice data, there still remain two challenges
unsolved in the specific situation of VDAs: 1) Beside speech
information, the speech-to-text information is also provided
by VDAs. Can we integrate multiple modalities(speech and
text) to help enhance the performance on inferring emotion?
2) Unlike the traditional speech emotion recognition methods
based on acted labeled data, the tremendous amounts of VDA
users bring in a great diversity of users’ dialects and expression
preferences. Besides, due to the massive scale of our dataset,
manually labeling the emotion for every utterance is not
practical. Therefore, how to utilize those large-scale unlabeled
data to increase the emotion inferring accuracy?

In this paper, employing a real-world voice dataset from So-
gou Voice Assistant containing 7.5 million utterances assigned
with its corresponding speech-to-text information (provided
by 1), we study the problem of emotion inferring for large-
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Fig. 1. The workflow of our framework.

scale Internet voice data. Specifically, we firstly propose a
semi-supervised Emotion-oriented Bimodal Deep Autoencoder
(EBDA) solution to infer emotion from large-scale Internet
voice data integrating both acoustic and textual features. We
adopt Latent Dirichlet Allocation (LDA) [7] which is widely
used in the text-based sentiment analysis and achieves good
performance to get the text features, and the feature selection
algorithm used in [5] to extract 113 acoustic features(e.g.
energy, f0, MFCC, LFPC). Next, we manually label 3000
utterances into six emotion categories [5], namely disgust,
happiness, anger, sadness, boredom and neutral. Those labeled
utterances as well as 7.5 million unlabeled data are employed
in our semi-supervised model to make our model flexible to
diverse users. Then, we use the parameters we learn in EBDA
as a more comprehensive pattern to initial the classifier Deep
Sparse Neural Network(DSNN). Benefiting from involving the
large-scale unlabeled data, the training process can cover more
abundant linguistic phenomenon. These, to some extent, can
help solve the problem of user diversity and no training data
for specific user in the real-world VDAs. The experimental
results on six emotion categories based on our dataset out-
perform several alternative baselines (+10.18%in terms of F1
on average). We also discover that the unlabeled data used
in EBDA enhances the performance for +2.81% in terms of
F1 on average. To further demonstrate the practicability of
our model, we conduct some interesting case studies. The
illustration of our work is shown in Figure 1.

II. PROBLEM FORMULATION

Given a set of utterances V , we divide it into two sets V L

(labeled data) and V U (unlabeled data). For each utterance
v ∈ V , we denote v = {xa, xt}. xa represents the acoustic
features of each utterance, which is a Na dimensional vector.
xt represents the textual features of each utterance, which is a
Nt dimensional vector. In addition, Xa is defined as a |V |∗Na
feature matrix with each element xaij denoting the jth acoustic
feature of vi. The definition of Xt is similar to Xa.

Definition. Emotion. Previous research [5] discovers that in
human-mobile interaction, the emotion categories are different
from theories about emotion related to facial expressions [8].
According to their findings, we adopt {Happiness, Sadness,

Anger, Disgust, Boredom, Neutral} as the emotion space and
denote it as ES , where S = 6.

Problem. Learning task. Given utterances set V , we aim
to infer the emotion for every utterance v ∈ V :

f : (V L, V U , Xa, Xt)⇒ ES (1)

III. METHODS

In order to incorporate both acoustic and textual information
of the utterances, we propose a multimodal deep learning [9]
based model, Emotion-oriented Bimodal Deep Autoencoder
(EBDA), to fuse the two modalities better. EBDA utilizes the
large-scale unlabeled data for feature learning, which covers
the diversity of various utterances. The pretrained parameters
in EBDA are used as the initial parameters of Deep Sparse
Neural Network (DSNN), which employs the labeled data for
classification to make better inferring on emotion categories.
The structure of EBDA and DSNN is shown in Figure 2.

A. Emotion-oriented Bimodal Deep Autoencoder

Although the traditional Deep Autoencoder (DA) is an
approach for feature learning, it cannot make use of the
internal correlation between acoustic and textual features. Thus
we propose an Emotion-oriented Bimodal Deep Autoencoder
(EBDA) for feature learning. Regarding acoustic and textual
information as two modalities of utterances, we can train
EBDA to fuse the two modalities into a shared representation.

Given an utterance vi ∈ V , the initial input vector xi =
{xai , xti} represents the extracted feature vector. We use a
multilayer neural network to rebuild xi into x̂i = {x̂ai , x̂ti},
where x̂ai and x̂ti are optimized to be similar to the initial input
vector xai and xti specifically. The hidden layers of the EBDA
contain encoder network and decoder network illustrated as
the green circles of Figure 2. The relationship between two
adjacent layers depends on model parameters. After training,
we determine the final parameters as the output of this step.

In order to capture the internal correlation between acoustic
and textual information, we influence the training process of
EBDA by preprocessing the dataset. Concretely, tripling the
original dataset, we get X1 = {Xa, Xt}, X2 = {Xa, Xt},
and X3 = {Xa, Xt}. Then we set the textual features of
X2 and the acoustic features of X3 to zero. Now we get
a new dataset X = {X1, X

′
2, X

′
3}, where X ′2 = {Xa, 0},



Algorithm 1 Emotion-oriented Bimodal Deep Autoencoder
Require: X = {Xa, Xt}, a preprocessed feature matrix.
Ensure: Final parameter W , the parameter after the training

process.
1: Initialize model parameters θ(l), α, λ1, λ2
2: repeat
3: W (l) =W (l) − α δ

δW (l) J(W, b)

4: b(l) = b(l) − α δ
δb(l)

J(W, b)
5: until convergence (Gradient Descent)
6: return W

and X ′3 = {0, Xt}. When training the autoencoder, we still
expect it to recover all the three datasets into full features
(i.e. X̂ = {X1, X1, X1}). In this way, the EBDA learns
the internal correlation between acoustic and textual features
automatically.

Formally, supposing the EBDA has Nh layers, the recursion
formula between two adjacent layers is:

h
(l+1)
i = sigmoid(W (l)h

(l)
i + b(l)) (2)

where h(l)i denotes the vector of lth hidden layers for vi, W (l)

and b(l) are the parameters between lth layer and (l+1)th layer
and sigmoid is the sigmoid function (sigmoid(x) = 1

1+e−x ).
Specially, h(0)i = xi and x̂i = h

(Nh+1)
i .

The cost function to evaluate the difference between x and
x̂ is defined as:

J(W, b) =
λ1
2m

m∑
i=1

||xi − x̂i||2 +
λ2
2

∑
l

(||W (l)||2F + ||b(l)||22)

(3)
where m is the number of samples, λ1, λ2 are hyperparameters
and || · ||F denotes the Frobenius norm.

The first term in Equation 3 indicate average error of x̂.
The second term is a weight decay term for decreasing the
values of the weights W and preventing overfitting [10].
The hyperparameters control the relative importance of the
three terms. We define θ = (W, b) as our parameters to be
determined. The training of EBDA is optimized to minimize
the cost function:

θ∗ = argmin
θ
J(W, b) (4)

The optimization method we adopt is Stochastic Gradient
Descent Algorithm [11].

The complete algorithm for EBDA is summarized in Algo-
rithm 1. After the training process, W is used as the initial
parameters of Deep Sparse Neural Network.

B. Deep Sparse Neural Network

To infer emotion from the acoustic and textual features
of utterances, we perform a supervised learning using Deep
Sparse Neural Network to make the initial input extracted
features xi = {xai , xti} classified to ES . We first use param-
eters W learned from EBDA to initialize the lower layers of
DSNN, then we finetune the network with back-propagation
optimization with batch update. For the lower layers, the

Fig. 2. The structure of EBDA and DSNN. (Parameters are explained in
Section 4.)

(a) Size of unlabeled data in
EBDA.

(b) Number of hidden layers in
EBDA.

Fig. 3. Parameter analysis (in terms of F1-measure on average).

network is defined the same as Equation 2. For the highest
layer, the hypothesis is defined as:

Pi = softmax(W (L)h
(L)
i ) (5)

where h(L)i and W (L) are the activation of the highest level
feature neurons and parameter for vi. Pi is the class prob-
ability. softmax is the softmax function (softmax(x) =

ex∑S
k=1 e

xk
). The overall object of network is then given by

min− 1

m

m∑
i=1

S∑
j=1

y
(i)
j logPj +

λ

2

∑
l

(||W (l)||2F + ||b(l)||22)

+β
∑
j=1

KL(ρ||ρj)

(6)
where m is the size of training utterances set, and y(i)j is the
ground truth indicating whether example(i) belongs to class
j by zero for false and one for true. W (l) and b(l) are the
parameters between lth layer and (l + 1)th layer. λ and β
are weight decay and sparse penalty while ρ is the sparse
parameter. KL(ρ||ρj) is the Kullback-Leibler (KL) divergence
[12] given by

KL(ρ||ρj) = ρ log
ρ

ρj
+ (1− ρ) log 1− ρ

1− ρj
(7)

We apply the Limited-memory Broyden Fletcher Goldfarb
Shanno (L-BFGS) optimization algorithm [13] to train DSNN.
By calculating the gradient all over the network with all the
samples, we update the network in a batch with loop until it
converges.



TABLE I
THE PRECISION, RECALL AND F1-MEASURE OF 5 METHODS FOR INFERRING EMOTIONS IN VDAS.

Method Happiness Sadness Anger Disgust Boredom Neutral Average

Precision

NB 0.2373 0.1182 0.1925 0.1487 0.1528 0.6983 0.2580
RF 0.3231 0.2667 0.2917 0.1857 0.2821 0.5408 0.3150

SVM 0.2958 0.2909 0.2900 0.2286 0.2025 0.5803 0.3147
DSNN 0.2749 0.1748 0.2158 0.1736 0.2010 0.5856 0.2710

DA+DSNN 0.2754 0.2714 0.2489 0.1708 0.2000 0.5899 0.2927
EBDA+DSNN 0.3279 0.3118 0.3268 0.2194 0.2109 0.6011 0.3330

Recall

NB 0.2490 0.3015 0.4621 0.1574 0.2314 0.3184 0.2866
RF 0.1728 0.0294 0.0966 0.0401 0.0431 0.9168 0.2165

SVM 0.2160 0.1176 0.2000 0.0988 0.0627 0.8446 0.2566
DSNN 0.2551 0.1324 0.1793 0.1543 0.1608 0.6678 0.2583

DA+DSNN 0.2510 0.1397 0.1966 0.1265 0.1569 0.7153 0.2643
EBDA+DSNN 0.2901 0.2132 0.2862 0.1327 0.1216 0.7545 0.2997

F1-Measure

NB 0.2430 0.1698 0.2718 0.1529 0.1841 0.4374 0.2432
RF 0.2252 0.0530 0.1451 0.0660 0.0748 0.6803 0.2074

SVM 0.2497 0.1675 0.2367 0.1379 0.0958 0.6880 0.2626
DSNN 0.2647 0.1506 0.1959 0.1634 0.1786 0.6240 0.2629

DA+DSNN 0.2626 0.1845 0.2197 0.1454 0.1758 0.6466 0.2724
EBDA+DSNN 0.3079 0.2533 0.3051 0.1654 0.1542 0.6691 0.3092

Fig. 4. Feature contribution analysis.

IV. EXPERIMENTS

A. Experimental setup

Dataset. We establish a corpus of voice data from Sogou
Voice Assistant 1 (Chinese Siri) containing 7,534,064 Man-
darin utterances recorded by 405,510 users in 2013. Every
utterance is assigned with its corresponding speech-to-text
information, query topic and user’s location provided by Sogou
Corporation.

We build a labeled dataset to do the emotion classification
in DSNN. Due to the massive scale of our dataset, manually
labeling the emotion for every utterance is not practical. Thus
we randomly sample 3,000 utterances from the dataset and
invite three people to annotate the emotion. The annotators are
well trained and asked to label the emotion by listening to and
reading the utterances simultaneously. When annotators have
different opinions on the same utterance, they stop and discuss.
If they cannot reach an agreement, the utterance is labeled
Unclear and discarded. Finally, 2,942 utterances are labeled.
The emotion distributions of these utterances are: Neutral:
61.3%, Happiness: 13.2%, Disgust: 13.0%, Boredom: 4.8%,
Anger: 3.9% and Sadness: 3.8%. Besides, all the unlabeled

data are employed to do feature learning in EBDA. Thus, the
whole training process can be considered as a semi-supervised
learning.

Comparison methods. To evaluate the effectiveness of our
proposed method EBDA+DSNN, we compare the performance
of emotion classification with some baseline methods, in-
cluding Naive Bayes (NB) [14], Random Forest (RF) [15],
Support Vector Machine (SVM) [16], and Deep Sparse Neural
Network (DSNN). Employing the DSNN as classifier, we also
compare the performance of different autoencoder settings for
pretraining, including None (DSNN only), Deep Autoencoder
(DA-DSNN) [17], Emotion-oriented Bimoal Deep Autoen-
coder (EBDA-DSNN).

Evaluation metrics. In all the experiments, we evaluate
the performance in terms of F1-measure [18]. All the results
reported are based on 5-fold cross validation.

B. Feature Extraction

To model the acoustic information of users’ queries, we
adopt the feature selection algorithm used in [5] to extract 113
acoustic features, including energy features (13), F0 features
(13), MFCC features (26), LFPC features (24), spectral cen-
troid features (13), spectral roll-off features (13), and syllable
duration features (11).

To model the textual information of users’ queries, Latent
Dirichlet Allocation (LDA) [7] is widely used in the textual-
based sentiment analysis and achieves good performance [19],
[20]. We adopt the LDA method used in [20] to generate the
textual features. Given utterance u’s text t, it outputs a vector
g = {g1, g2, ..., gK}, where K is the length of the vector. K
is an adjustable parameter, and in our work we set K = 100.

C. Experimental results

Performance of different classifiers and autoencoders.
We make several comparisons among different classification
models including NB, RF, SVM, and DSNN. Also, DA-
DSNN is used as a baseline of EBDA. Table I shows the
comparison results. In terms of F1-measure on average, the



proposed EBDA-DSNN outperforms all the baseline methods:
+5.9% compared with NB, +14.8% compared with RF, +4.4%
compared with SVM, +2.8% compared with DSNN and +1.0%
compared with DA-DSNN. From the comparison between
DSNN and DA-/EBDA-DSNN, we can find that autoencoder
pretraining strategy takes effect actually. Besides, the com-
parison between DA-DSNN and EBDA-DSNN indicates that
EBDA’s integration of acoustic and textual information does
contribute to the results.

Comparing the prediction results of different categories, we
find out the performance of boredom and disgust have lower
performance than other categories. On one hand, these two
categories have a small proportion in the labeled training data.
Meanwhile, the same as [21] [6] report, utterances labeled
boredom and disgust are often mixed together and difficult to
distinguish. This phenomenon is obvious when compare to the
results of anger which also only have a small proportion in
the training data.

Feature contribution analysis. We discuss the contribu-
tions of acoustic and textual features. The F1-measure results
of 4 methods (i.e. Textual Only, Acoustic Only, Textual
+ Acoustic, Textual + Acoustic + EBDA) for 6 emotion
categories and their average are shown in Figure 4. We
can see that the performance of “Textual Only” is far from
satisfactory, while “Acoustic Only” performs better than “Tex-
tual Only”. It indicates that when inferring emotion in the
VDAs, acoustic features play more important role than textual
features. Besides, ”Textual + Acoustic” performs better than
either “Textual Only” or “Acoustic Only” on average, proving
the necessity of utilizing the two modalities simultaneously.
Furthermore, we find that “Textual + Acoustic + EBDA” that
combines acoustic and textual features by EBDA has the best
performance, which proves the effectiveness of EBDA on
modality fusion.

Parameter sensitivity analysis..We further test the parame-
ter sensitivity about two key parameters in EBDA. 1) Training
data size. From Figure 3(a), we can find that as the scale of
unlabeled data increase, the performance gets better gradually.
Thus utilizing large-scale unlabeled data does contribute to the
results. 2) Hidden layer number. Theoretically, the description
ability of EBDA can be improved by more layers. In Figure
3(b), the performance does increase with layer number less
than 3, but gets worse when the number becomes larger
due to overfitting. Therefore, we take 3 hidden layers in our
experiments.

Error analysis. Finally, we analyze the possible sources of
errors based on the emotion inferring results of the proposed
EBDA-DSNN. 1) Limited labeled data. Due to the massive
scale of our dataset, we are not able to label every utterance
manually. Thus we only utilize 2,942 labeled utterances to
train the DSNN, which may be not enough to get a well-
trained model. 2) Unbalanced data. As 61.3% of the labeled
utterances belong to Neural category, the data are extremely
unbalanced, which has a negative impact on the results of clas-
sification definitely. 3) Limited emotion categories. Inferring
emotion categories is a very difficult task, because emotion is

highly subjective and complicated. At present, there is still no
consensus on how to model emotion. Thus the 6 categories
we adopt may not cover all the human feelings in the VDAs.

D. Case study

With the effective method we propose, we can apply several
interesting case studies to discover some social phenomenons
and mine the emotion pattern of public. We randomly sample
50,000 utterances and label their emotion categories using our
model. Besides, the extra information of utterances including
publishing time and talking topics are utilized to improve the
analysis, provided by 1.

Time-emotion correlation. In Figure 5(a), the x-axis rep-
resents different time of a day, and the y-axis represents the
proportion of the six kinds of emotion. From the figures,
we summarize some interesting findings about time-emotion
correlation as following.
• Joy at night. In Figure 5(b), the proportion of happiness

from 17:00 to 20:00 is relatively high, indicating that
people may feel more relaxed and comfortable when they
finish the work during the day and start to enjoy the night.

• Dull before dawn. In Figure 5(c), the proportion of
boredom is obviously higher and the proportion of anger
is lower from 2:00 to 5:00, which is the regular time
of sleeping. Such phenomenon can be explained by the
people who suffer from insomnia. When people find it
difficult to sleep on the early morning, they may feel
bored and chat with VDA.

Topic-emotion correlation. In Figure 5(d), the x-axis rep-
resents ten different types of topics, and the y-axis represents
the proportion of the six kinds of emotion. From the figures,
we summarize some interesting findings about topic-emotion
correlation as following.
• Fun seeker. In Figure 5(e), the proportion of boredom in

topic “Chat” and “Joke” is relatively high, indicating that
people may treat the VDA as a funny friend when they
are bored.

• Healing music. In Figure 5(f), the proportion of sadness
in topic “Music” is obviously higher than others, which
indicates that music is a common way for people to
comfort themselves when they are sad.

Employing the large-scale dataset that covers various kinds
of data, our model is capable of inferring emotion for different
utterances published by different users. It can support better
analysis on people’s emotion pattern and find more interesting
emotion cases, which is useful for some social psychology
studies.

V. CONCLUSION

In this paper, we construct a hybrid semi-supervised learn-
ing framework to do emotion inferring from large-scale Inter-
net voice data. To integrate the acoustic and textual modalities
of utterances, we propose an Emotion-oriented Bimodal Deep
Autoencoder (EBDA), which also employs the large-scale
unlabeled data for feature learning. Then we utilize a DSNN



(a) Emotion proportion of different time in a day. (b) Happiness proportion of different time in a
day.

(c) Boredom proportion of different time in a
day.

(d) Emotion proportion of different topics. (e) Boredom proportion of different topics. (f) Sadness proportion of different topics.

Fig. 5. Findings of case studies.

initialized by EBDAs parameters to classify emotion, which
employs the labeled dataset we build. The union structure of
EBDA and DSNN is considered as semi-supervised learn-
ing. As shown in the experiment results and case studies,
our framework turns out to be effective in speech emotion
inferring. Furthermore, our work can be utilized in real-world
applications. For instance, we can provide emotional response
in the VDAs, which contributes to more humanized intelligent
service.
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