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Abstract—Exponential growth of media consumption in online social networks demands effective recommendation to improve the
quality of experience especially for on-the-go mobile users. By means of large-scale trace-driven measurements over mobile Twitter
traces from users, we reveal the significance of affective features in shaping users’ social media behaviors. Existing recommender
systems however, rarely support such psychological effect in real-life. To capture such effect, in this paper we propose Kaleido, a real
mobile system that achieves an online social media recommendation solution by taking affective context into account. Specifically, we
design a machine learning mechanism to infer the affective pulse of online social media. Furthermore, a cluster-based latent bias model
(LBM) is provided for jointly training the affective pulse as well as user’s behavior, location and social contexts. Our comprehensive
trace-driven experiments on Android prototype expose a superior prediction accuracy of 87%, which has 25% accuracy superior to
existing mobile recommender systems. Moreover, by enabling users to offload their machine learning procedures to the deployed
edge-cloud testbed, our system achieves speed-up of a factor of 1,000 against the local data training execution on smartphones.

Index Terms—Mobile recommender system, affective computing, social networks.

F

1 INTRODUCTION

The mass-adoption of mobile social networking services and
the wide integration of sharing media content on popular
mobile applications have paved the way for quantitative
research efforts tackling the relations between content and
virality [2]. Very recently, a novel kind of user experience is
working its way through the online space, i.e., designed to
take the affective pulses appeared in online social network
(OSN) usage, such interface supports people to explicitly
bridge their emotional states with OSN information sub-
scription [3].

To capture users’ attention, many tweets in OSNs nowa-
days are usually published with affective media content [4].
In real-life usage, due to the affective pulse [5], i.e., the first
feeling when accessing an object, triggers the mind 3,000x
faster than rational thoughts, many users sensibly make a
quick decision whether to subscribe a media tweet by such
affective pulse (e.g., happiness, sadness, or disgust) [6]. This
actually opens up a new venue to integrate the affective fea-
ture for future media recommender system design. Indeed,
by means of large-scale data-driven measurements in our
early stage work, we reveal that 60% user clicks are moti-
vated by media contents, among which, more than 76% are
triggered with explicitly affective pulses (§2.2). Moreover,
with further affect-aware measurement in our established
system, users are benefited with 82% accuracy to subscribe
the right tweets (§5.3). Therefore, it is highly promising to
rethink the social media recommender mechanism by jointly
considering users’ affective pulses as well as traditional
features.

Preliminary results of this paper has been presented in [1]
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Fig. 1. Conceptual Kaleido diagram.

Existing recommender systems, however, provide rec-
ommendations largely based on users’ content prefer-
ence, using content- [7], demographic- [8], knowledge- [9],
geographical- [10], or utility- [11] based methods. To boost
the prediction accuracy, recent studies [12] and [13] pro-
posed methods which input the user’s OSN usage pattern
into a linear regression (LR) for prediction. To further im-
prove social media propagation or streaming delivery, some
researchers try to use both user preference and network con-
text to determine the appropriate presentation method [14].
However, we have yet to see an approach that shifts mobile
social media recommendation from the above approaches
to a scheme that jointly tackles user’s feeling, which plays a
critical role in media content consumption in OSNs, behav-
ior pattern (i.e., user preference, content attributes, media
formats, time, and network), location preference (i.e., the
likelihood of consuming media in different locations), and
social closeness (i.e., social interaction strength).

To fill this void, in this paper we propose a real system
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Kaleido, which jointly utilizes the unique visual features
(to capture user’s affective pulse context), mobile behavior
context, location context, and social context, in OSNs for
mobile media recommendation. In particular, let us consider
the case of Fig. 1 where, by integrating Kaleido into a
third-party Twitter app, i.e., Twidere [15], the user’s social
media experience is benefited from her habits along both
affective (i.e., happiness) and social closeness (i.e., keep eyes
on the sender) directions. Targeting at this goal, we propose
a learning-based mechanism to infer affective pulses from
media files. On this basis, we further combine the affec-
tive feature with user behavior pattern, location preference,
and social friendship to predict users’ potential interests
in online social media usage. Moreover, we employ such
inference and network environment (e.g., WiFi available or
not), to execute the whole prediction.

Specifically, to better understand affective pulses in so-
cial media, we employ a learning-based affective computing
mechanism and a Flickr image dataset with well-known
ground-truths, which has been manual tagged with affective
tags by prior work [16], to infer the probability distribution
of the affective pulse. In particular, as visually presented
in Fig. 7, we input the affective pulse as a 6-dimension
feature to the recommender algorithm. On the other hand,
through early stage measurements, we observe that both
location and social friendship (i.e., the social interaction
strength among users in OSN) has a critical impact on the
user’s tweet click behavior. Then we conduct the location
clustering to identify its significance in mobile media rec-
ommendation as well as the social friendship clustering to
classify a user’s social friends into different groups with
different levels of importance. On this basis, we next design
a cluster-based Latent Bias Model (LBM) to predict user’s
likelihood of media click with considering all the above
contexts as well as different network and time contexts. Last,
by integrating Kaleido into Twidere, an Android Twitter
app which has 500,000 downloads on Google Play, we
collect user traces from a demographical composition of
16,952 people who consented to report usage data to us.
This also enables us to conduct a data-driven measurement
and design and realistic experiments to evaluate the per-
formance of Kaleido’s mobility support (§5.3). In addition,
by collecting system logs from our edge-cloud servers, we
reveal the effect of Kaleido testbed (§5.2).

We summarize the major contributions and vantage
points of this paper as:

• We collect a large set of real-life mobile traces from
16,952 participants, and reveal the significance and
importance of affective feature in social media usage.
To our best knowledge, we are the first to employ the
affective context in such recommender system.

• We propose a learning-based model to infer affective
pulses in media files with 75% accuracy. Further-
more, we design a cluster-based LBM for jointly
training affect, behavior, location and social contex-
tual features. Through data-driven experiments, we
illustrate that it achieves a prediction accuracy of
87%, which outperforms baselines using the same
training features.

• We deploy a worldwide edge-cloud testbed for real-
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Fig. 2. Framework of Kaleido system.

life Twidere users by enabling them to offload ma-
chine learning procedures with a speed-up of 1,000x
factor over the local execution. Our Android pro-
totype consumes user with a low cost of cellular
data and energy, which is a significant improvement
against the benchmark approaches.

We shall emphasize the feasibility of using Twidere and
Android smartphone as a study case. Nevertheless, the
proposed methedologies are applicable to most mobile apps
and OS platforms.

The rest of this paper is organised as follows: §2 outlines
system framework of Kaleido, describes how the system
design and work through Twidere app. §3 proposes the
affective computing approach to identify the affective pulse
in media content. §4 designs the machine learning mech-
anism that joint each features to train user’s likelihood
click. §5 conducts the trace-driven emulation evaluation on
smartphones for evaluating Kaleido’s performance. Then in
§6, we discuss the impact factors in our system. §7 reviews
the homogeneous studies, and §8 concludes this paper as
well as future work.

2 KALEIDO: THE FRAMEWORK AND SYSTEM
DESIGN

Kaleido provides a real system which consists of an edge-
cloud testbed as well as a mobile framework. We start with
a brief review of Kaleido system (§2.1), and close the section
with describing the key measurements that relate to inspire
Kaleido’s design details (§2.2).

To keep the illustration concrete, we assume for now
that all servers use a learning-based algorithm to identify
affective pulses in media; we relax that assumption in the
next section. We defer a discussion of the overall algorithm
within Kaleido until §4.

2.1 System Overview

Conceptual Framework: To better present the logic, Fig. 2
introduces the framework of Kaleido from a high level. By
learning affective pulses, social closeness, location prefer-
ence and behavior pattern, Kaleido enables users with me-
dia recommendation during their operating process. More
specifically, when a fresh media content arrives, Kaleido is
triggered to take the relevant features of the media context
(user behavior, affect, location and social friendship) as
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input to the trained cluster-based LBM, to identify the like-
lihood of user actions ahead of time. We will elaborate how
the proposed cluster-based LBM jointly train the features in
§4.4.

Mobility Support: Fig. 3 depicts how Kaleido mobile
framework works in a user-centric manner (i.e., imple-
mented on a user’s mobile device), and collects social feeds
when accessing new media content with Twitter applica-
tion. Specifically, it offloads user’s machine learning pro-
cedure to cloud servers and pushes the training patterns to
smartphones asynchronously. Also note that these traces are
retrieved using the Twitter REST APIs [17] in the servers in
according to collected user traces. Furthermore, by pushing
the training pattern to smartphone, Kaleido executes the
inference locally and rapidly. Finally, it comes out with the
recommended tweets for user in according to the inference
results (e.g., see Fig. 1).

System Infrastructure: Similar to existing techniques,
Kaleido employs an edge-cloud architecture for building
a testbed to process users’ machine learning offloading.
Specifically, such architecture supports the time-varying
bandwidth and storage allocations requested by different
regions. By collecting system logs from early stage deployed
servers, we further setup the hardware configuration as
illustrated in Table 5. We further discuss the efficiency of
such infrastructure in §5.2.

Caching Policy: Since the traces are cached temporarily,
to ensure privacy, text content in tweets is not recorded and
all personal fields are anonymized in advance. In addition,
the cached data is uploaded to the cloud server only for
further analysis when the smartphone is charging and con-
nected to WiFi. To accelerate the process, Kaleido offloads
the machine learning procedure to the testbed whose de-
ployment information are shown in Table 5. Furthermore,
the learned patterns are stored on the device to enable real-
time inference by Kaleido.

Network Congestion: To relief the network congestion
caused by the offloading procedure, in this paper, end-user’s
processing is delivered to the topological nearest server by
leveraging her DNS resolution, as we elaborate on in §5.1.

2.2 Measurements in Early Stage Work
To capture the effect of affective pulse in recommending so-
cial media, we conduct data-driven measurements in early
stage work.

Specifically, inspired by a very recent study [16], in
this paper, we adopt 6 basic affects in describing human

Fig. 4. Kaleido users’ demographic composition.

TABLE 1
Description of collected user profiles.

Contents Collected traces
Tweets time, sender, receivers

Media files URL link, sender, receivers
User behaviors publish, like, retweet, mention

App usage launch time, close time, present time
Feature training start time, end time
Coarse location coordinates

User request DNS resolution, HTTP metadata

emotional state [18], i.e., happiness, surprise, anger, disgust,
fear and sadness, to investigate the forming of users’ affec-
tive pulses. Furthermore, for evaluating the effectiveness of
affective learning in §3, we use a well known dataset from
Flickr which covers more than 1 million image traces that
published by 4,725 users and has been manual tagged with
the affective labels by prior work [16]. To further investigate
users’ media behaivor in mobile environment, during the
whole early stage, i.e., from March to October 2015, as Fig. 4
illustrates, we also have collected data traces from more
than 16,952 Twidere [15] users 1 from all over the world
with a diverse demographic composition. Because, although
Twitter’s contents are publicly available, information about
when, how, and where they access these social streams are
not available in particular in the mobile environment. As the
aim is to enable Kaleido system by identifying the affective
pulse within media tweets that the user is most interested in,
a set of tweet attributes are collected as well. Twidere tracks
the user social behaviors (e.g., retweet, like, or mention) of
the individual tweets. The source of a tweet is also recorded
by identifying whether the tweet is obtained from a direct
friend or propagated through friends of others’ friends. In
addition, with the consent from the user, Twidere enables
us to keep track of the user’s activity events when reading
the tweets (watching, clicking, or commenting along the
timeline). Note that we also collect users’ coarse location
traces at the same time. The collected trace items are shown
in Table 1. Moreover, in this paper, we deploy the Kaleido
geographical servers by referring to user composition pro-

1. Twidere discloses the usage statistics on installation or update.
Users are able to opt in or not. In the early stage work, 43% active users
grant us permissions, which indicates user privacy-awareness and the
effectiveness of the privacy disclosure. We keep the collected data in an
anonymous and irreversible style. Also note that the social graphs and
tweets are publicly available.
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Fig. 5. 16,952 users’ app usage across 7 months.

vided by Fig. 4.
The users clicked more than 900 million referred tweets

in total. Specifically, as Fig. 5 illustrates, on average, a user
refreshes 536 tweets a day but only clicked 15% of them.
We further observe that more than 60% of the clicked tweets
contain media files. Moreover, by referring to the affective
learning in §3, we find that more than 76% media have
explicitly affective pulses. Note that we infer whether a
media file owns an explicitly affect, which shapes the affec-
tive pulse, by comparing with the corresponding probability
with a set of trained baseline thresholds 2 in §3. Fig. 6 illus-
trates that users are time-sensitive, e.g., on weekdays, the
user tends to use the app more frequently in the nighttime
especially in the midnight, while use the app sporadicly
in the daytime. It motivates us to analyze user behavior
pattern by taking time feature in accounts. The volume and
diversity of data also reflects the real-life behavior of the
participant users, which is crucial for understanding and
recommending media in mobile social application network
traffic, and significant in evaluating the system in a data-
driven scheme.

3 LEARNING AFFECTIVE PULSE FROM MEDIA
CONTENT

In this section, we introduce a learning-based affective com-
puting mechanism by which we identify the affective pulse
in a media file.

As aforementioned in §1, the forming of affective pulse,
e.g., probability distribution of the 6 affects in an object,
is complicated. To proceed, we employ a machine learning
process. Specifically, we denote the space of affective pulse
as A ={Happiness, Surprise, Anger, Disgust, Fear, Sadness}.
As different people might have distinct affect even when
accessing the same media 3, in our learning algorithm, we
adopt the approach provided by [4], i.e., we denote every
affect as a linguistic label for the matchup in the learning
process. To proceed, we further denote the affect a ∈ A ex-
pressed by a media file. Inspired by [16], we use visual vari-
ables to capture the affect expressed by the media file. We
characterize each affect by training with 7 visual features,
i.e., saturation (SR), saturation contrast (SRC), brightness
(B), bright contrast (BRC), 5 dominant HSV colors (DC), cool

2. In our measurements, the baseline set inclines to {0.24, 0.14, 0.63,
0.19, 0.33, 0.49}. However, it changes with different OSN cases.

3. Note that since the volume of video sharing in Twitter is rare.
Thus, unless otherwise specified, we mainly focus on inferring affective
pulses of images.
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Fig. 6. A user’s media usage across hour of day.

TABLE 2
Single affect leanring accuracy (%) of baselines by testing 1 million

images with ground-truths.

Naive SVM
Kaleido Bayes (with linear kernel)

Happiness 76.18 57.05 56.12
Surprise 72.32 52.94 52.25

Anger 75.56 57.11 55.42
Disgust 76.28 56.64 55.40

Fear 74.77 55.26 54.05
Sadness 77.88 60.10 56.95

color ratio (CCR), and dull color ratio (DCR). Thus, we have
feature set U = {SR, SRC,B,BRC,DC,CCR,DCR}. For
each media c ∈ C, we have the ground truth ac ∈ {1, 0}
such that ac = 1 (ac = 0) means that whether the media file
c has the specific affective feature a ∈ A (e.g., happiness) or
not. Then we have:

f(uc, ac) =
1

zθ
exp{θTuc} (1)

where uc are the mentioned visual features, ac is the affect
express by the media file c, θ is a vector of real valued
parameters, and zθ is a normalization term to avoid the
potential over-fittings. On this basis, the probability distri-
bution P of the affect a in the media files c ∈ C can be
formulated as:

P (A|C) = 1

Z

∏
C
f(uc, ac) =

1

Z
exp{θTβ} (2)

where Z = zθ is the normalization term, β is the aggregation
of factor function. In fact, this is exactly multi-variant logis-
tic regression, and can be solved by using L2 regularization.

Furthermore, by taking all the affects a ∈ A in account,
the objective function can be derived as:

O = logP (A|C) = log
∑
A|AU

exp{θTβ} � logZ

= log
∑
A|AU

exp{θTβ} � log
∑
A

exp{θTβ}
(3)

In addition, the gradient of θ can be represented as:

∂O
∂θ

=
∂(log

∑
A|AU exp{θTβ} � log

∑
A exp{θAβ})

∂θ
= (expP (A|AU )� expP (A))β

(4)
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Fig. 7. Flowchart of learning affective pulse from a media. We first extract the values of 7 visual features respectively. By training with the Flickr
dataset, it learns the probabilities of 6 affects with the loopy belief propagation (LBP) [19] algorithm. Last, we regularize each P (a|C) (where a ∈ A)
with comparing its probability with corresponding baseline.
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Fig. 8. Statistics of a user’s social interaction frequency and friendship
clustering with 1 year usage.

Note that the algorithm updates the parameters by θ = θ0+
∂O
∂θ λ. Where λ is a regularization parameter to be manually

tuned.
Visual Illustration: After illustrating the affective learn-

ing model, Fig. 7 visually illustrates how each visual feature
uc contributes to the proposed mechanism 4. We take a snap-
shot of the Christmas cat & dog as a study case, it results in
a set of probabilities of {0.43, 0.18, 0.10, 0.18, 0.18, 0.21}. By
filtering the insignificant affective features via comparing
with the baselines (as illustrated in §2.2), it reports that the
happiness and surprise features are significant and hence
have value 1 while the rest affective features are with value
0. Finally, we obtain the affective pulse of {1, 1, 0, 0, 0, 0} as
the input affective feature to the recommender model later.

In addition, through training with 80,000 affect-aware
images that manual tagged by [16], we further evaluate the
accuracy of our learning algorithm and baselines in Table 2.
We observe that our model achieves an average prediction
accuracy of 0.75, which significantly beyonds the bench-
marks in identifying the probability distribution of each
affect a ∈ A in a specific media. This again demonstrates the
efficiency of the proposed affective machine learning. On the
other hand, we also discuss the significance and importance
of adopting affective pulse in recommending media in §6.

4. Note that the DC feature consists of a 15-dimension HSV martix.
Due to space limit, we omit the details of DC feature in Fig. 7’s pipeline
assembling illustration, and interested readers can refer to [20].

TABLE 3
Media click probability (%) by measuring different features of 16,952

users across one year.

close familiar unfamiliar

Totality Media click 51.33 28.39 13.67
Time

Features
Weekdays 56.38 32.63 13.06
Weekends 36.94 19.30 11.75

Interaction
Features

Mentioned by 28.57 17.72 10.81
Liked by 43.66 27.92 14.58

Retweeted by 38.10 27.69 9.60
Replied by 51.82 28.85 13.42

4 JOINT RECOMMENDATION WITH AFFECTS, BE-
HAVIOR, LOCATION AND SOCIAL CONTEXTS

In this section, we first conduct a data-driven analysis on
user’s mobile behavior, location traces and social interac-
tions. Then we reveal their impact on the user’s media click
actions. On this basis, we last introduce how Kaleido jointly
train the affective features with these three features for a
location-based affect-aware social media recommendation.

4.1 Behavior Pattern Analysis
In OSNs, the generation and propagation of a media content
is simple: any user who generates or re-shares it will become
a new host of the media content. Users can fetch these
contents from their direct friends in the social network.
Intuitively, the social relationships and interactions among
a user and her friends have a significant impact on the
twittering behaviors. A user might treat different friends
differently, and interact with some close friends frequently,
while having little contact or response with some unfamiliar
friends on Twitter [21].

As mentioned in §2.2, user’s media click actions enjoy
characteristics of high selectiveness and time sensitivity.
Along this direction, in Fig. 8(a), we plot the number of one
real-life user’s clicked tweets with media content (i.e., media
tweets) from her friends (i.e., social neighbors) on Twitter in
the log-log scale. We rank the set of friends in descending
order according to the number of tweets sent by them. We
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Fig. 9. A study case of geo-distribution in according to a user’s affective
pulses consumption among consecutive 6 months.

observe a strong power law phenomenon, i.e., almost 70%
of the tweets are from only a few friends (less than 10%),
and most other friends have little contribution. This demon-
strates that friendship (or social interaction strength) plays
a critical role on shaping her usage behavior on Twitter.

4.2 Location Preference in Media Consumption

We then explore the impact of location 5 on user’s media
click action. For illustration, we first plot such information
by utilizing Google Maps [22]. Intuitively, we further con-
duct a clustering process to investigate user’s daily routine.
Specifically, as Fig. 9 illustrates, one user tend to be more
active around two places 6. Each blue or red point represents
at least 1,000 nearby media content click.

Based on such preliminaries, we then cluster the histor-
ical events to estimate their most likely number of geo-
centrals for each user. Specifically, as Fig. 9 indicates, a
user is often active around two categories of geographical
centrals (geo-centrals). This drives us to make the location
feature as an input for the proposed algorithm in this paper,
as we describe later.

As aforementioned, users tend to be active around reg-
ular locations, e.g., office and home. This motivates us to
group notifications into several clusters to identify the geo-
graphical centrals for the characterization of user’s location
patterns. For instance, the office-home case, as Algorithm 1
depicts, given a set of time-aware historical geolocation
records (l1, l2, . . . , lM ) of the media tweet, our approach
starts with clustering each lm into corresponding clusters
and refers the geo-central of the cluster as the (coarse) user
location.

Specifically, we first carry out the geolocation clustering
process to partition user’s twitter activities with several geo-
centrals. Similar to many location-based studies [23], [24],
[25], we utilize the geolocations in notifications received
from social friends as the clustering feature, and use the
Single-Linkage clustering algorithm [26] to carry out the ge-
olocation clustering with different geo-centrals and distance
thresholds.

Moreover, we denote the referred geo-centrals as G.
Note that, in this case, we actually have ||G|| = ||G∗|| + 1

5. With location, we denote a geographical situation, e.g. at home (in
contrast to geolocations).

6. Note that we have also explored another 100 users, the results are
the general case.

Algorithm 1: Home-Office clustering algorithm.
Input: Geolocation recordsR = {(l1, t1), . . . , (ln, tn)}.
Output: Geographical situation of each (li, ti).
R′ = Geo_Clustering(R);
while (li, ti) ∈ R′ do

Location(li, ti) = Others;
if ti ∈ {weekends, holidays, home time in workdays} then

Location(li, ti) = AtHome;

if ti ∈ {work time of workdays} then
Location(li, ti) = AtOffice;
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Fig. 10. Impact on different number of geo clustering centrals in the
cluster-based LBM algorithm.

clusters since sporadical and irregular geolocation samples
are grouped as a cluster of “Others", which plays a noisy
role in our algorithm. Intuitively, in order to train the pre-
diction mechanism well, more fine-grained data traces with
more detailed information with respect to all geolocation
clusters are needed. Nevertheless, in practice it is extremely
difficult to obtain such fine grained data traces since some
geolocation data samples are distributed sporadically and
irregularly, which results in a clustering with insufficient
information. In addition, when G is too large, the number of
training parameters increases significantly due to the large
number of geo-centrals, which results in a heavy machine
learning workload (see §5).

4.2.1 Effectiveness of “G∗ = {2 centrals}" Location Clus-
tering
As illustrated in Fig. 10, we denote G = ||G∗|| and, when
G = 2, almost 80% of Twitter activities are concentrated
within a distance range of 140 meters. The activities would
be more concentrated from each other within a range of 120,
20, and 10 meters when G = 3, 4, and 5, respectively. In
addition, the GPS accuracy is around 7.8 meters and that
could make influence on our analysis. Given this fact, the
geographical geometrical distance in Fig. 11 is calculated
from each geolocation to its corresponding cluster central.
Moreover, by jointly training with other features in our
proposed algorithm (see §4.4), the G = 2 case performs sig-
nificantly better in the location clustering with an accuracy
gap of 0.16 7. This is also consistent with our observation in
Fig. 9 that most media contents are concentrated consumed
around 2 geolocations, e.g., home and office.

7. Note that the gap value caused by both different geo and social
clustering numbers might variate from users. Thus, in this paper, we
obtain them by averaging the heavy users (see §5.3) for illustrating the
significance of our approach.
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(a) 2-central clustering
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(b) 3-central clustering
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(c) 4-central clustering
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(d) 5-central clustering

Fig. 11. Geo-cluster coverage within different geographical geometrical distance to the cluster centrals, respectively.

4.3 Social Friendship Closeness
We further quantify the impact of social friendship on the
user’s media tweet click behaviors. To proceed, we first
carry out the social friendship clustering. The intuition is
that in reality a user typically has very close relationships
with a small set of people (e.g., close friends), and is familiar
with a group of people (e.g., colleagues). For many other
people, the user would have little contact with them. With
this observation, we conduct the friendship clustering using
the commonly-adopted an unsupervised machine learning
with K-Means algorithm [27]. As illustrated in Fig. 8(b),
we utilize the number of tweets subscribed from a specific
friend and the number of tweets published by the user
to that friend as the features, and cluster the set of her
friends into three types: close friends (i.e., cluster “close"),
familiar friends (i.e., cluster “familiar"), and acquaintances
with infrequent contacts (i.e., cluster “unfamiliar").

After the social friendship clustering, we then explore
the impact of friendship on users’ media click behavior
when accessing the media tweets. Table 3 measures all users’
average media click probability under different feature sce-
narios. In total, we observe that users click the media file
with a probability of 0.42 (0.28, 0.13), when the media is sent
by a close (familiar, unfamiliar) friend, respectively. This
again confirms that social friendship has a significant impact
on user’s media click behavior. As another example, for
the interaction feature, if the media tweet has been replied
or mentioned by a close friend, then user would click the
media file with a probability gap of 0.17.

4.3.1 Effectiveness of K = 3 Social Clustering
Fig. 12 visually confirms thatK = 3 achieves a good balance
and the best prediction accuracy with a performance gap of
0.13. In addition, it comforts a fact in our daily life obser-
vation that people tend to classify their friends into three
types: close friends, familiar friends, and acquaintances.

4.4 Training with Affect for Recommendation
After illustrating mobile behavior pattern, location pref-
erence and social friendship closeness, we now introduce
the machine learning principle in our system by jointly
identifying the set of important training features to build
up the learning model.

4.4.1 Training Context Features
As mentioned above, we found that four types of context
features are critical: affective pulse in media, behavior pat-
tern, , location preference during media usage, and social
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Fig. 12. Accuracy variation of different social cluster number by referring
to all users’ usage.

closeness. Furthermore, we use these four features as the
input to our proposed cluster-based machine learning algo-
rithm as:

1) For the behavior feature, whenever the user would
click a media depends on her regular usage behav-
ior.

2) For the affective feature, what she prefers to click
is mainly influenced by each affect that reflect from
the media content.

3) For the location feature, around which geo-central
user tends to click the media file is counted.

4) For the social feature, the host (close, familiar or
unfamiliar friend) of receiving media file is decisive.

In the following, we denote the number of these training
features as F , and their set as F .

4.4.2 Cluster-Based Latent Bias Model
We propose the learning model which is based on the Latent
Bias Model (LBM) introduced in [28] that aims to utilize
proper bias terms to capture the importance of different
features for prediction. In fact, this inspires sophisticated
collaborative filtering models such as matrix factorization.
Here we extend the standard LBM to our case with social
friendship clustering, and develop the cluster-based LBM
approach for a data-driven learning scheme.

In particular, we define bf,a,g,k as the cluster-based bias
term to stand for the case that a media is sent by a friend in
the friendship cluster k. The parameter a expresses potential
affects ai ∈ A. In addition, the clustering location central
gi ∈ G indicates where a user is nearest when clicking
media content. Last, the bias term should also contain the
feature f ∈ F that we introduce above. Thus, for a given
media content c, we first introduce an indicator function
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Fig. 13. Accuracy of three baseline algorithms.

Icf,a,g,k ∈ {0, 1} such that Icf,a,g,k = 1 if the media c is sent
by a friend in the friendship cluster k ∈ K with affect a ∈ A
and contains the feature f ∈ F . Then, we define the user
action score for the media c as follows:

γc = α+ b0 +
∑
f∈F

∑
a∈A

∑
g∈G

∑
k∈K

bf,a,g,kI
c
f,a,g,k (5)

α is the user’s average click rate across all historical media
content usage, and b0 is the overall bias for the user. In
general, a higher user action score γc implies a higher
probability that the user will click the media content c.

Then, the critical task is to train the cluster-based LBM,
i.e., to learn the proper bias terms in Equation 5 in order
to well capture a user’s media click actions. Suppose that
the set of historical user data traces (historical media usage
set of the user) is denoted as C. For each media c ∈ C, we
have the ground truth yc ∈ {1,�1} such that yc = 1 (yc =
�1) means that the user clicks (open) the media file c in
tweet of arrival. To quantify the discrepancy between the
prediction based on the media click score γc and the desired
ground-truth output yc, we adopt the widely-used logistic
loss measure

L(γc, yc) = log[1 + exp(�γcyc)]. (6)

Thus, we learn proper bias terms to minimize the total loss
across over the historical data trace C, i.e.,

∑
c∈C L(γc, yc).

Following common practice in machine learning, in order
to avoid overfitting, we also impose L2 regulation into
minimization. That is, we minimize the following objective
function:

O =
∑
c∈C
L(γc, yc)+λ

||b0||2 + ∑
f∈F

∑
a∈A

∑
g∈G

∑
k∈K

||bf,a,g,k||2
 ,

(7)
where λ is the regularization parameter to be manually
tuned.

Since the function in Equation 7 is convex, we can apply
the first-order condition and derive the gradients as

∂O
∂b0

= �
∑
c∈C

(
exp(γcyc)

1 + exp(γcyc)

)
yc + 2λb0, (8)

∂O
∂bf,a,g,k

= �
∑
c∈C

(
exp(γcyc)

1 + exp(γcyc)

)
ycI

c
f,a,g,k + 2λbf,a,g,k.(9)

Similar to many machine learning studies, we can adopt
the Stochastic Gradient Descent (SGD) method [29], to learn

TABLE 4
Summarization of Fig. 13.

Algorithm Balanced Best Worst
accuracy accuracy accuracy

Cluster-based LBM 0.87 0.91 0.70
Linear regression 0.76 0.84 0.66

SVM with linear kernel 0.69 0.79 0.52

optimal bias terms. The key idea is to utilize the data
samples to iteratively update the gradient as follows:

bt+1
∗ = bt∗ � εt

∂O
∂bt∗

, (10)

where bt∗ denotes a given bias term at the t-th iteration and
0 < εt < 1 is the smoothing factor for updating. As shown
in [29], the SGD method converges to the optimal learning
point provided a sufficiently small εt.

After learning, when a fresh tweet with media c arrives,
we predict a user’s click likelihood using the loss measure
in (6). Specifically, we predict that a user will click the media
file if yc = 1 has a lower risk, i.e., L(γc, yc = 1) < L(γc, yc =
�1). In this case, the media is clicked by the user and
otherwise in reverse.

4.4.3 Model Baselines
We last evaluate the performance of the proposed cluster-
based LBM algorithm by referring to all the participants’
usages. Fig. 13 depicts the cumulative probability distribu-
tion (CDF) of the prediction accuracy for all tested tweets.
As mentioned above, when the friendship cluster number
K = 3 and geo-central number G = 2, it achieves the
best performance with an average prediction accuracy of
0.87. As baselines, we also evaluate the prediction process
with linear regression (LR) in [13] and SVM. Jointed with
Table 4, Fig. 13 evaluates all baselines’ performance that LR
approach can mostly achieve an average prediction accuracy
of 0.66, which outperforms SVM approach by 16%, but be
inferior to the cluster-based LBM by 11%. This demonstrates
the efficiency of the cluster-based LBM. The gain of cluster-
based LBM stems from the fact that the defined cluster-
based bias terms can well capture the impact of affective
feature on user’s media click, we elaborate it in §6.

5 EXPERIMENTS

In this section, we conduct the trace-driven evaluation over
the testbed and Android smartphones to investigate the
performance of Kaleido.

5.1 Implementations
To evaluate the performance of Kaleido system, we de-
ploy a worldwide network testbed to undertake users’ ma-
chine learning procedure. Table 5 summarizes the network
topology, geographic distribution and configuration of our
testbed. Specifically, there are 3 categories of service for the
deployed servers, i.e., server-load balancing (as a streaming
server), caching (as a data center), and content service (as a
computing center).
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TABLE 5
Details of network topology, geographic distribution and configuration of Kaleido testbed.

Region Location Carrier and OS Bandwidth Service Configuration (CPU, Memory, Storage)

US
Los Angeles Vultr (Debian 8.0) 10Mb Server-load Balancing 2.4GHz single-core, 768MB, 20GB
San Mateo Aliyun (Debian 7.5) 5MB Caching, Content Services 2.3GHz dual-core, 2GB, 1TB

Europe Frankfurt Vultr (Debian 8.0) 10Mb Server-load Balancing 2.4GHz single-core, 768MB, 15GB

Asia
Tokyo Vultr (Ubuntu 14.04) 10Mb Server-load Balancing 2.4GHz single-core, 512MB, 20GB

Shanghai Tencent (CentOS 7) 5MB Caching, Content Services 2.6GHz quad-core, 12GB, 1TB
Beijing Campus (Debian 8.0) 1MB Caching 2.2GHz octa-core, 128GB, 6TB

Moreover, to illustrate the effect of performance of the
provided mobile framework, we also run a trace-driven
evaluation for the 16,952 users that each of them keeps
active for a long and consecutive period of at least 3 months
with detailed trace records. The emulator runs on a Google
Nexus 6, Nexus 5 and Samsung Galaxy S4 smartphone,
respectively, that with access to both China Mobile TDD LTE
network as well as a campus WiFi network. The emulator
reads and replays the usage events collected from real-life
users, including connecting to or disconnecting from WiFi
networks, accessing Twitter, and reacting its media files.

5.2 Testbed Measurements
The testbed serves a diverse workload spanning massive
machine learning procedure: friendship clustering, training,
media content downloading, content caching, and other
miscellaneous process. We use the latest 3 months’ (from
December 2015 to March 2016) user request logs and UNIX
round robin database (RRD) logs collected from 6 vantage
servers, i.e., 2 in US, 1 in Europe and 3 in Asia, to measure
the performance of our deployed testbed. To this end, we
leverage the Metalink standard [30], which is an XML-based
download description format that provides the metadata
of the content 8. Metalink-enabled HTTP clients and prox-
ies understand the relevant HTTP headers (e.g., to verify
the authenticity and integrity of the data, discover faster
mirrors, etc.), while legacy clients simply ignore them. In
addition, the RRD log reports the system load, network
bandwidth and stock prices with a constant disk footprint.

Table 6 summarizes that the balance and costs of Kaleido
edge-cloud infrastructure. Specifically, we recorded that the
most heavy system load appeared in the machine learning
process server (with an average usage of 21.4%) while the
most bandwidth consuming was the server-load balancing
(with an average usage of 0.2MBps) 9. In addition, the
latency for all the Kaleido edge servers are less than 670ms
which again comforts the factuality of our testbed.

5.3 Benchmarks
After the testbed efficiency has been discussed, we next
evaluate the performance of Kaleido mobile framework

8. E.g., see http://releases.ubuntu.com/releases/15.10/ubuntu-
15.10-desktop-i386.metalink.

9. Note that this low average bandwidth consumption is due to the
training procedure for all users are sporadicly triggered when each
smartphone is in charge and WiFi available and after a time slot of one
day from the last calling. In addition, user profiles are usually no more
than 200KB.

TABLE 6
Testbed performance across 3 months.

Service Latency Bandwidth System
(ms) usage (%) load (%)

Service 170 4.7 21.4
Caching 211 3 7.3

Server-load 670 14.4 5.7

running on the smartphones in against with existing rep-
resentative recommendation algorithms. As illustrated in
Fig. 13 the cluster-based LBM algorithm in Kaleido is very
efficient, and achieves the average prediction accuracy of
0.87. Upon comparison, the linear regression (LR) algorithm
using tweet training features can only achieve the average
prediction accuracy of 0.66. In the following, we also com-
pare different recommendation algorithms given as: In the
following, we further consider the three recommendation
approaches as performance benchmarks in this paper as:

• Kaleido approach: We implement the recommender
system by running the proposed cluster-based LBM
with affective context, user behavior contexts, and
social contexts.

• Content-based approach: We implement the content-
based recommender system like [7] by using labels,
key words and social topics as training features.

• Social contextual approach: We replace the content fea-
tures with social information contexts in [14].

Specifically, we evaluate the performance of Kaleido
recommender system, by considering different users, i.e.,
top 5% users (the most 750 active users who refresh 1,301
tweets and consume 40 media tweets per day on average),
top 30% users (users that daily refresh 780 tweets and
consume 22 media tweets), and top 60% users (users that
daily refresh 429 tweets and consume 11 media tweets).
For the evaluation of each approach, the same user trace
are replayed, and media files are obtained by using the
WebView component provided by the Android framework.
To embrace stable data and battery consumption results, we
evaluate this two items by training with each user’s first 2
month trace and using at least another 2 month traces for
testing.

Accuracy Growth: We first compare different ap-
proaches’ accuracy growth with time. As illustrated in
Fig. 14(a), our algorithm tends to be stale after one month’s
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Fig. 14. Benchmarks across accuracy growth, daily battery overhead and monthly cellular data cost.

usage. We see that Kaleido approach varies within a range of
0.65 to 0.87 and has a median of 0.81, when after 2 months’
use. Upon comparison, after the same time usage, i.e., two
months, content-based and social contextual approaches
start with lower accuracy of 0.62 and 0.65, and perform
median values of 0.74 and 0.76 respectively. This is due
to the fact that affective feature plays a significant role
in learning users’ media click (we shall discuss it in §6).
This demonstrates the efficiency of the proposed Kaleido
approach in media recommendation.

Data and Battery Overheads: We next compare differ-
ent recommendation approaches in terms of cellular data
consumption of Twidere app (which includes the cellular
traffic overhead by both Kaleido and on-demand contexts
fetching by the user), and battery consumption of the app
per day (i.e., the percentage of the fully-charged battery
capacity). The results are shown in Fig. 14(c) and Fig. 14(b)
respectively. We observe, take the top 5% users for instance,
that Kaleido uses 6.8MB cellular traffic per month and about
1.4% battery usage per day on average. On the other hand,
the content-based (social contextual) approach costs users
with 7.5MB (5.8MB) cellular traffic per month and 1.1%
(1.2%) battery usage per day on average.

Moreover, evaluations in Fig. 14 also illustrate Kaleido
outperforms existing approaches in all kinds of usage cases.

6 DISCUSSIONS

6.1 Does Affective Pulse Really Matter?

Kaleido, as mentioned above, is the first step towards an
affective media recommender system. Performance of the
proposed algorithm in this paper demonstrates that Kaleido
is promising when integrating the affective feature with
user behavior and social friendship contexts. However, we
have yet known how critical the affective feature plays, i.e.,
only using content and context features. To understand it,
in Fig. 15, we compare the accuracies of all the mentioned
algorithms in §4.4 (with the same user group) by removing
the affective feature, i.e., we only put the behavior and social
contexts into the training model. Similar to the prediction
evaluation above, we adopt the K = 3 social clustering
as the study case. We observe that the LBM enjoys a pos-
itive impact with affective feature and achieves an average
prediction accuracy of 0.71, which has 11% performance
degradation with respect to the standard algorithm. Upon
comparison, the LR (SVM) algorithm achieves an accuracy
of 0.68 (0.66), with a slightly small performance degradation
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Fig. 15. Evaluation of no affective feature in cluster-based LBM (with
11% degradation), LR (with 3% degradation), and SVM (with 2% degra-
dation).

of 0.03 (0.02). This again demonstrates the uniqueness and
significance of Kaleido approach in exploiting the affective
feature for efficient media recommendation.

6.2 Why Training on Cloud?
One key component of Kaleido is to implement the cluster-
based LBM algorithm for the data training (i.e., learning the
optimal bias terms from the user data traces). Intuitively,
there are two data processing approaches: 1) processing on
local device, i.e., we conduct the data training procedure on
user’s smartphone locally. 2) processing on cloud, i.e., we
offload the data training to the cloud server is to leverage the
strong parallel computing power to speed up the data train-
ing. To investigate the characteristics, in Fig. 16, we emulate
the average time overhead of these two data processing ap-
proaches with the top 60% active users, by setting different
size of user trace in the learning algorithm, with considering
the network connection latency we measured in Table 6.
We find that the cloud approach can significantly decrease
the daily time overhead for data processing, by a factor of
1,000. We further compare the monthly data consumption
for training on cloud for different users respectively. We
compare that this procedure consumes user largely 2.5MB 10

data per month, which confirms that the effectiveness of
training on cloud. Note that since the user’s behavior tends
to be stable, to further save both cellular data and energy

10. Note that the Kaleido consumes additional 4.5MB/month since
additional data/information download is needed for the testing.
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Fig. 16. Overhead with different training schemes for the machine learning procedure in Kaleido.
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Fig. 17. Daily costs with different testing schemes for Kaleido.

usage, we can aggregate the training data for a longer while
(e.g., one week) but not everyday any more, and carry out
data training weekly by offloading the training to the cloud
only when the user is on WiFi while charging.

6.3 Why Testing on Local?
Furthermore, we also evaluate the testing schemes based
on above approaches. The results are shown in Fig. 17. We
observe that the cloud approach consumes more energy
(0.5% of total battery usage per day), leading to additional
cellular data usage (0.9MB per month). In addition, since
the cloud approach requires network connection, it brings
a latency of 670ms each time, daily time overhead for
testing all the tweets on local ties to the cloud approach.
Thus, the local testing approach is more preferable. The
reason is that, different from the training process that is
computation-intensive, the testing procedure is data-centric
and offloading to the cloud would incur higher delay and
energy overhead for data exchange between the cloud and
the device.

6.4 How does Location Feature Impact?
Kaleido is a first step towards recommending the social me-
dia for mobile users. Our algorithm’s performance demon-
strates that Kaleido is promising when integrating the geo-
location feature with other three key features for machine
learning processing.

However, it may happen that in practice geolocation is
disabled. On mobile OSs, e.g., Android and iOS, a subsys-
tem called Location Services provides access to the user’s
current coarse geolocation [31]. iOS allows users to limit
an app’s usage of location services on a per-app basis. In
particular, when an app first attempts to access location
services, the user is asked to grant or deny access. Android
provides a similar subsystem, where users can toggle access
to location on a global level for all apps on the phone. Due
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Fig. 18. Evaluation of no location feature in cluster-based LBM (with 17%
degradation).

to these features, Kaleido on Android tends to less likely
explore location than iOS.

Motivated by this observation, in Fig. 18, we further
investigate the accuracy of the proposed cluster-based LBM
algorithm without access to location. It depicts the CDF of
the prediction accuracy for all twitter notifications with-
out location support. Similar to the accuracy evaluation
above, we adopt the 3 friendship cluster case. It achieves
an average prediction accuracy of 0.69, with a performance
degradation of 0.18 with respect to the case with location
feature. This shows the importance of location in Kaleido.
As benchmark, we also implement the prediction process
with linear regression (LR) without location, which has an
average accuracy of 0.61. Through extensive trace-driven
evaluation in the following section, we confirm that Kaleido
without access to location can achieve better performance
over other benchmark approaches. This is mainly due to the
significance of the social friendship feature. Thus, if a user
cares about her location privacy and disables geolocation,
Kaleido is still a superior solution among the alternatives
without access to location.
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Fig. 19. Energy usage performance with/without location feature on
Google Nexus 6 smartphone.

6.5 Limitations of Using Location Feature
6.5.1 Privacy Concerns
In practice, to protect sensitive privacy, it can happen that
the geolocation access is disabled by user. Specifically, in
modern mobile OS, e.g., Android or iOS, a subsystem called
Location Services provides access to the user’s current coarse
geolocation. iOS allows users to limit an app’s usage of
location services on a per-app basis. In particular, when
an app first attempts to access location services, the user
is asked to grant or deny access. Android provides a similar
subsystem, where users can toggle access to location on a
global level for all apps on the phone. Thus, the location
feature some times can be a potential factor of privacy
leakage. Due to above reasons, Kaleido tends to less likely
call location information (context). Thus, it raises a high
demand that our system should also has better performance
than original mechanism when there is no location feature
support.

6.5.2 Energy Usage increase
We also explore the energy usage performance caused by
invoking location feature. As Fig. 19 shows, through exten-
sive trace-driven evaluation on the basis of above measure-
ments, we confirm that Kaleido without access to location
can achieve better performance than using location service.
Specifically, in worst (common) case, using location service
with Kaleido can cost 0.3% more battery cost ever day. Note
that this is very few increase because, the mobile social
application can refresh the location information. Thus, we
can read the data from cache directly. Morever, if a user cares
about his/her location privacy and disables geolocation, as
discussed before (§6.4), Kaleido is still a superior solution.

7 RELATED WORK

In this section, we review three directions of prior research
directly related to our work. Specifically, we highlight the
key differences of Kaleido against them respectively.

7.1 Media-based Affective Computing
Although many recent studies, e.g., [32], keep on empha-
sizing the significance of affective media computing, but
their approaches are still highly subjective and difficult to
embrace quantitative measurements [33]. A recent study
[16] focus on training data and models for identifying the
emotional influence, based on the ground-truth affects that

are manually labeled in order to guarantee the prediction
accuracy. However, it also brings a challenge to efficiently
process massive images in OSNs [16]. Motivated by this
issue, [34] uses image tags and comments from user be-
haviors to predict potential affect expressed by the media
content, i.e., image, in social networks. Along a different
line, motivated by the insight that user behavior, social
friendship and media affect play critical roles on user’s
emotion-triggered action in OSNs, in this paper, we propose
a novel learning-based mechanism to intelligently deal with
media recommender system which support the affective-
aware recommendation.

7.2 Recommendation Techniques
There are two prevalent schemes for building recommender
systems, i.e., content-based (CB) [13] and collaborative filter-
ing (CF) [35]. The CB method is on a basis of recommending
items, e.g., images or videos, that are similar to those in
which users are interested in according to the historical
feeds. The CF approach, on the other hand, recommends
items to the user based on other individuals with similar
preferences or tastes. Many recent studies, such as [14],
[36], [37], are built on both CB and CF systems, usually
by rating a set of items. To avoid this extra burden on
the user, leveraging implicit interest indicators [38], such as
the purchase history, views, clicks, or queries, has recently
become more popular in recommender systems. Along a
different line, motivated by the insight that time, social,
and network context play critical roles on users’ media click
behavior, in this paper we propose a novel recommendation
system based on the generalized cluster-based bias model.

7.3 Mobile OSN Studies
To analyze social behaviors of mobile Twitter users, [39]
identifies people using microblogging to talk about their
daily activities and to seek or share information as well
as analyzing the user intentions associated at a community
level, showing how users with similar intentions connect
with each other. In addition, a number of recent studies,
such as [40], [41], address the problem of computing in-
fluence in Twitter-like networks and finding leaders whose
tweets are influential. Our work does not aim at finding
users who are influential directly. Instead, we exploit that
different social friends have different impact on a user’s
activation on media usage or propogation. [42] proposes a
tree-based algorithm to mine user-friend graphs to discover
strong friends of a user. In contrast to our work, [42] does
not consider how to utilize the social friendship structure to
facilitate the information and content sharing among users,
in particular, under a rich communication environment.

7.4 Geolocation-based Application
Recent geo-related research addresses that mobile location is
very important for improving the quality of user experience
(QoE). Primarily, [23] draws an ideological framework of
location-based services on smartphones. In addition, [24]
reveals some of the complexities involved in designing
underlying technologies of collaborative location-based ser-
vices. Furthermore, a number of recent studies emphasizes
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the issue in geolocation-based networks to find high-impact
leader objects. [25] leverages GPS location data on smart-
phones to estimate the likelihood using the place and then
infers a more accurate user location. On the other hand, [43]
aims to mine users’ activity histories (GPS logs) and rec-
ommends activities suited for specific locations. This work
mainly focuses on how to identify the current location of
a user. While in our work, we predict user’s action when
located in a set of specific geolocations and time, which
tackles another branch of location-based learning issues.

7.5 News Feed Streams and Recommendations

Recommender systems researchers have explored ways to
use news feed algorithms to help users connect with the
content they are most interested in on social media sites like
Facebook. Several research teams have proposed different
ways to use information about network ties, topic prefer-
ences, and characteristics of posts in the system to make
recommendations. For example, Sharma et al. [44] proposed
using information about content preferences from the Face-
book profiles of users and their Facebook Friends to help
generate recommendations for movies, television shows,
and books. Items recommended by the algorithm variant
that used Facebook Friends profile in formation received
the highest number of views. In a followup study [45],
they found that such social recommendations were more
persuasive when they came from people who were close
friends whose interests are known to the user. Rader et
al. [46] explored how individuals make sense of the in-
fluence of algorithms, and how awareness of algorithmic
curation may impact their interaction with these systems.
The goal of Kaleido is orthogonal to them as it utilizes
social relationship and emotion features toward a better
recommender service.

8 CONCLUSION

We have presented Kaleido, a system for smart OSN me-
dia recommendation on smartphones. Building upon our
cluster-based machine learning mechanism, Kaleido auto-
matically learns relationships among various content and
context impacts. Experiments with real Twitter traces from
16,952 people and an Android prototype show that Kaleido
can achieve superior performance of a significant media
recommendation accuracy while with minor additional data
or energy consumption. Moreover, our design enables of-
floading of machine learning procedures to a cloud server,
and achieves a speed-up of up to about 1,000 over local ex-
ecution on smartphones. For future work, we will consider
extending our system with a comprehensive implementa-
tion to support more media formats, e.g., video.
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