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ABSTRACT
In speech understanding, perceptual computing is widely
used to quantify the perceptual properties. Previous re-
searches on perceptual computing mainly focused on the level
of phonemes (i.e. consonants and vowels). However, percep-
tual measurement in the level of syllables is also needed in
scenarios such as speech recognition. To tackle this problem,
we propose a systematic approach to calculate the perceptual
distribution of monosyllables. It is composed of three parts.
First, we generate a feature vector from each monosyllable
based on acoustic property. Second, we construct the per-
ceptual space based on the perception distance of every two
feature vectors. Third, we measure the perceptual distribu-
tion for these monosyllables based on the perceptual space
and a constraint matrix. Experiments show that 1) cluster
results are in accordance with articulation position category
in acoustics, 2) recognition rate of audiometry is within the
standard range of performance-intensity function, 3) distribu-
tion of paracusia is consistent with the computation results of
perceptual distribution.

Index Terms— Speech perception, perceptual distribu-
tion, acoustic features, monosyllable signals

1. INTRODUCTION

Perceptual properties of speech signals are the critical part of
speech understanding [1, 2, 3, 4]. Conventionally, the per-
ceptual properties are concluded from a great deal of clinical
study such as the recognition test [5, 6, 7]. Recently, percep-
tual computing of speech is introduced to provide a quantified
and convenient approach to measure the perception of speech
[8, 9]. It extracts the acoustic features and then computes per-
ceptual distribution.

Previous researches on the perceptual computing of
speech mainly focused on the level of phonemes (i.e. conso-
nants and vowels). They extracted time domain and frequency
domain acoustic features to compute articulation index of
consonants [10, 11]. Moreover, they obtained the perceptual
categories of vowels from processing the frequency domain

features and enhanced the tone perception based on funda-
mental frequency envelope [12, 13, 14].

However, perceptual measurements in the level of syl-
lables is sometimes needed as well. For example, clinical
speech recognition tests contain the test on syllable recog-
nition [15]. Moreover, the monosyllable is the basic unit of
daily speech rather than the phoneme and thereby perceptual
computing in the level of monosyllables potentially enhances
the validity of the speech perception measurement [16]. Ad-
ditionally, perceptual distribution of syllables affects the dis-
crimination of corpus, and further affects the validity and re-
liability of clinical audiometry [17]. Therefore, it is vitally
important to research the perceptual distribution of monosyl-
lables.

To measure the perceptual distribution of monosyllables,
we propose an systematic approach. It uses the monosyllabes
as input and generates perceptual distribution of these mono-
syllables. The basic intuition of our approach is that an inter-
mediate representation is needed to map the acoustic physical
property to perceptual property, which we call the perceptual
space of monosyllables. The original syllables are processed
into the perceptual space and then the perceptual space can
be used to derive the perceptual distribution. Our approach is
composed of three parts. The first part is responsible for fea-
ture vector generation of each monosyllable, which is based
on the acoustic property and the second part is for the percep-
tion space construction, which is based on the perception dis-
tance of every two feature vectors. The last part measures the
perceptual distribution with the perception space and a con-
straint matrix. Contributions of this paper can be concluded
as follows:

• We propose a systematic approach to calculate the per-
ceptual distribution of monosyllables. Experimental re-
sults show that recognition rate of audiometry is within
the standard range of performance-intensity function,
and that distribution of paracusia is consistent with the
computation results of perceptual distribution.
• We introduce the feature vectors of a monosyllable,

which represent its acoustic features. Cluster results



are in accordance with articulation position category.
• We design a method to construct perceptual space of

monosyllables based on perceptual distance. It can be
further applied to all the syllabic corpus.

2. AN OVERVIEW OF THE SYSTEMATIC
APPROACH
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Fig. 1. An overview of the systematic approach to compute
the perceptual distribution of monosyllables.

Fig.1 illustrates an overview of the our approach to mea-
sure perceptual distribution of monosyllables. During the
pre-processing, monosyllables are first segmented into con-
sonants and vowels (Section 3.1) and then the acoustic fea-
tures including the time-domain and frequency-domain are
extracted (Section 3.2). With the weighted summary of the
features of the phonemes, feature vectors of the monosyl-
lable are generated, which represent its acoustic property
(Section 3.3). Provided with the feature vectors, the percep-
tual distance of each two monosyllables are calculated and
then the perceptual space is constructed, which represents the
confusion degree of these monosyllables (Section 3.4). The
perceptual distribution is measured based on the perceptual
space (Section 3.5). Clusters of phonemes (consonants and
vowels) are intermediate results to validate the accuracy of
acoustic features and perceptual distance. The perceptual dis-
tribution of the monosyllables is the output of our approach.

3. THE DESIGN AND IMPLEMENTATION OF THE
SYSTEMATIC APPROACH

We choose Chinese mandarin monosyllabic corpus as a rep-
resentative target in this work. Our purposed approach con-
structs its perceptual space, and measure the perceptual dis-
tribution of the monosyllables in the corpus.

3.1. Syllables Segmentation

A monosyllable contains a consonant, a vowel, and a tone.
Consonants and vowels have different perceptual features, so
we segment the monosyllables into consonants and vowels
separately [18]. During the segmentation, signal length, am-
plitude and energy are recorded for each monosyllable.

3.2. Acoustic Features Analysis of Consonants, Vowels
and Tones

Based on the time-domain and frequency-domain acoustic
characteristic of speech signals, we extract the vector features
of consonants, vowels and tone, which contains 38, 9 and 6
dimensions respectively.

The unit and the magnitude of the elements in the feature
vectors are usually greatly different, so we normalize the fea-
tures with Equ 1, which guarantees the value of features are
within the range of [0, 1]. It eases the construction of percep-
tion space.

xnew =
xpre −min(Xpre)

max(Xpre)−min(Xpre)
(1)

In Equ 1, xnew represents the normalized feature vectors.
xpre denotes the extracted feature vectors, and Xpre denotes
the set of xpre. It is worth to be noted that each element of
the feature vector is normalized independently.

3.2.1. Acoustic Features of Consonants

Generally, signal length and energy of a consonant is short
and weak. Human ears are sensitive to acoustic characteristics
in frequency domain. So we extract a 38-dimension feature
vector, which is composed of 5 dimensions for time domain
[19], 12 dimensions for Mel Frequency Cepstral Coefficients
(MFCC), and 21 dimensions for bark band coefficients [20].

3.2.2. Acoustic Features of Vowels

A vowel follows a consonant in general situations. Therefore,
vowels perception should be considered with transition con-
dition from consonants [13]. So we choose linear predictive
coding (LPC) as acoustic features of vowels.

Taking 500 Hz, 1000 Hz, 2000 Hz as center, computing
the intergral of the LPC coefficients at bands of [450, 550]
Hz, [950, 1050] Hz, and [1950, 2050] Hz respectively, we get
a group of 9-dimension vectors as the features of vowels.



PD Average of
intra-Class

PD Average of
inter-Classes

Case of
intra-Class

Case of
inter-Classes

Consonants 0.396 0.796
0.232
(j/q/x)

1.174
(j/q/x↔ l/m/n/r)

Vowels 0.387 0.820
0.269

(ia/iang/iao)
1.023

(ia/iang/iao↔ ui/un)

Table 1. Perceptual Distance of Cluster Results. The perception distance values of inter-classes are much higher than those of
intra-class.

3.2.3. Acoustic Features of Tones

Tone plays an important role in perception of speech signals.
The main difference between tones lies in fundamental fre-
quency [14]. So we set fundamental frequency as the acoustic
features of tones.

We compute values of fundamental frequency with Equ
2, where f0n is fundamental frequency of the n-th sampling
point, f0pre(n) is fundamental frequency to be processed,
F0mean is the mean value of all the fundamental frequen-
cies before being processed, and F is constant of the slope of
the f0 contour.

f0n = F × (f0pre(n)− F0mean) + F0mean (2)

3.3. Feature Vectors of Monosyllables

Consonants, vowels and tones all affect each other for the
speech perception of the monosyllables. For syllables with
the same vowel but different consonants, acoustic perception
will change at the starting position of vowels. For example,
for the same [ang] in [bang] and [cang], LPC coefficients of
the first three dimensions are different because of the differ-
ence in consonants [b] and [c]. And for syllables with the
same consonant but different vowels, perception condition
changes at the ending position of consonants. For example,
for the same [b] in [bang] and [bing], f0 contours are differ-
ent because of the difference at the starting position of [ang]
and [ing]. Tones have a great influence on the ending posi-
tion of vowels. For the same [bang] with the first tone (bāng)
and the falling-rising tone (bǎng), LPC coefficients of the last
three dimensions are different.

Based on the above reasons, independently measuring the
phonemes cannot fully represent perceptual condition of the
speech signals. They should be considered together. So we
propose feature vectors in the level of monosyllable as de-
scribed in Equ 3.

S = αC + βV + γT (3)

In Equ 3, S represents the feature vector of a monosyl-
lable, while the C, V, T represents the feature vector of the
consonant, the vowel, and tone respectively.

In feature vectors of monosyllables, acoustic features of
consonants (α), vowels (β), and tones (γ) are parameterized

with different weights. In a monosyllable, the signal length
and energy of a consonant is much shorter and lower than a
vowel. So the weights of consonants should be lower than
those of vowels. Since the tone has an impressive impact on
the pronunciation of the vowel but not on the consonant, so
the weight of tones should be within the range of consonants
and vowels [8]. We vary the three parameters (α, β, γ) for
many monosyllabic corpus to find the best fitting values. They
are 0.10, 0.65, 0.25 respectively.

3.4. Perceptual Space of Monosyllables based on Percep-
tual Distance

Before computing perceptual space of monosyllables, we
need to determine the method to measure perception distance
between two syllables. The euclidean distance is intuitive,
which reflects the human perception condition [8]. In our
work, we measure perception distance between syllables
using euclidean distance of their feature vectors.

We apply the hierarchical clustering independently on the
consonants and vowels based on their perceptual distance. By
comparing the cluster results with the speech articulation po-
sition, the accuracy of the acoustic feature vectors can be fig-
ured out [1].

From the cluster results, we can see that there are 9 classes
of consonants (i.e. {j/q/x}, {ch/sh/zh}, {c/s/z}, {h/k/p/t},
{l/m/n/r}, {b/d/f/g}, {y}, {w}, {zero consonant}) and 9
classes of vowels (i.e. {o/uo/e/eng/ou/ong/ueing/u}, {ui/un},
{ia/iao/iang}, {iong/iou/iu}, {a/er/ang/ao}, {ua/uang/uai/uan},
{ai/an}, {ei/ü/ün/üan/üe}, {en/i/ian/ing/ie/in}). Compared to
the speech articulation position, the accuracy of clustering
results is validated [1].

We compute the perceptual distance of every two mono-
syllables in each class, and then set the average value as its
center point. Perceptual distance of the two center points is
defined as the perceptual distance between the two classes.
The perception distance values of inter-classes are much
higher than those of intra-class, as shown in Table 1.

3.5. Perceptual Distribution of Monosyllables

For each monosyllable, we select three monosyllables closest
to it from the perceptual space and the selection algorithm is
shown in Equ 4. This is because there are three phonemes(i.e.



j/q/x ch/sh/zh c/s/z h/k/p/t l/m/n/r b/d/f/g y w zero
o/uo/e/eng/ou/

ong/ueng/u 0.488 0.521 0.458 0.461 0.443 0.449 0.464 0.467 0.470

ui/un 0.494 0.527 0.464 0.467 0.449 0.455 0.470 0.473 0.476
ia/iang/iao 0.533 0.566 0.503 0.506 0.488 0.494 0.509 0.512 0.515
iong/iou/iu 0.512 0.545 0.482 0.485 0.467 0.473 0.488 0.491 0.494
a/er/ang/ao 0.530 0.563 0.500 0.503 0.485 0.491 0.506 0.509 0.512

ua/uang/uai/uan 0.506 0.539 0.476 0.479 0.461 0.467 0.482 0.485 0.488
ai/an 0.452 0.485 0.422 0.425 0.407 0.413 0.428 0.431 0.434

ei/ü/ün/üan/üe 0.452 0.485 0.422 0.425 0.407 0.413 0.428 0.431 0.434
en/i/ian/ing/ie/in 0.362 0.395 0.332 0.335 0.317 0.323 0.338 0.341 0.344

Table 2. The Constraint Matrix of Perceptual Space.

consonants, vowels, tones) in a monosyllable. These four
monosyllables are defined as one perceptual group, which is
the minimum unit of the perceptual space.{

p̄i = P ± δ
|p̄i − pi| ≤ ε

(4)

In Equ 4, the pi is the perception distance between the test
syllable and the candidate syllables, p̄i is mean value of all
the items to be selected, and P is a constraint constant for the
perceptual group.

Considering perceptual distance of phonemes from one or
two classes is not always the same, we set a unique constraint
value (P ) for each perceptual group. The value of P depends
on the main monosyllable of each perceptual group. Through
a survey on two corpus (males and females voice), we find the
best fitting values of δ, ε and P . The δ and ε are both 0.1, and
the P is a constraint matrix shown in Table 2.

4. EXPERIMENTAL RESULTS

We take a male-voice mandarin monosyllabic corpus as our
experimental target, which contains 1251 monosyllables and
covers almost all of our daily characters. The monosyllables
are segmented and tagged with VisualSpeech [18].

We conduct an audiometry experiment, using the percep-
tual groups in Section 3.5 as test materials. We set one mono-
syllable as the test item, together with three monosyllables in
the same perceptual group as the confusion items. 30 vol-
unteers (22 males and 8 females) from different background
participated the speech signals recognition tests, which were
generated according to the test groups.

Each participant took 60 perceptual groups in the exper-
iment. The average recognition rate is 82.1% and the vari-
ance is 6.7%, which is within the standard speech recognition
range[21, 22]. It indicates the accuracy of the generated fea-
ture vectors of the monosyllables.

From the results of wrong recognition, 69.4% of the con-
fusion recognition come from consonants, while 26.5% come
from vowels confusion and the other 4.1% are from tones.

Further more, in the consonants confusion, 92.9% confusion
items are in the same perceptual group with the test syllable.
For the vowels confusion, 89.1% of the confusion items are
in the same perceptual group with the test syllable. We can
see that distribution of paracusia is consistent with the com-
putation results of perceptual distribution.

From the experimental results, we can conclude that, 1)
recognition rate of audiometry is within the standard range
of performance-intensity function, validating the accuracy of
generated acoustic features in Section 3.3; 2) distribution of
paracusia is consistent with the computation results of per-
ceptual distribution, indicating the validity and reliability of
measured perceputal distribution.

5. CONCLUSIONS

In this paper, we present a systematic approach to measure
perceptual distribution of monosyllables. We introduce the
feature vectors, which represent the acoustic features of a
monosyllable. In addition, based on the perceptual distance,
we purpose the perceptual space of monosyllables to map the
acoustic property to perceptual property. Clustering results
of phonemes are in accordance with articulation position cat-
egory in acoustics, which validates the accuracy of the ex-
tracted acoustic features. The recognition rate of audiometry
is within the standard range of performance-intensity func-
tion and distribution of paracusia is consistent with the com-
putation results of perceptual distribution, which indicate the
validity and reliability of measured perceputal distribution.
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