






Algorithm 1 Bimodal Correlative Deep Autoencoder
Input: X = {X t , X b}, a preprocessed feature matrix.

C = {C t , Cb}, a clothing category matrix.
Output: Middle hidden layer feature h� N h /2� , the shared

representation of the input visual features.
1: Initialize model parameters � (l ) , �, � 1, � 2, � 3
2: repeat
3: W (l ) = W (l ) Š � �

�W ( l) J (W, b)
4: b(l ) = b(l ) Š � �

�b ( l) J (W, b)
5: until convergence (Gradient Descent)
6: for l = 2 to �N h /2	 do

7: h(l ) = sigmoid(W (l Š 1) h(l Š 1) + b(l Š 1) )
8: end for
9: return h� N h /2�

parameters. After training, we determine the parameters and
learn the intermediate representation as the output of this
step.

Compared to classic autoencoder, we introduce correl-
ative labels ci into the original symmetrical structure as
shown in yellow box of Figure 3. We use the neural network
to regain the correlative labels ci , reconstructing xi in paral-
lel. In this way, the clothing categories can be leveraged to
help to discover the correlation between various visual fea-
tures and make facilitate the training process.

In order to capture the internal correlation between top
and bottom in clothing collocation, we influence the train-
ing process of BCDA by preprocessing the dataset. Con-
cretely, we treat top and bottom as two different modals
of fashion collocation. Tripling the original dataset, we get
X 1 = {X t , X b}, X 2 = {X t , X b}, and X 3 = {X t , X b}.
Then we set the bottom features of X 2 and the top features of
X 3 to zero. Now we get a new dataset X = {X 1, X �

2, X �
3},

where X �
2 = {X t , 0}, and X �

3 = {0, X b}. When training
the autoencoder, we still expect it to recover all the three
small datasets into full features (i.e. �X = {X 1, X 1, X 1}).
In this way, the BCDA learns the hidden rules of fashion
collocation automatically.

Formally, supposing the BCDA has Nh layers, the recur-
sion formula between two adjacent layers is:

h(l +1)
i = sigmoid(W (l ) h(l )

i + b(l ) ) (1)

where h(l )
i denotes the vector of l th hidden layers for

vi , W (l ) and b(l ) are the parameters between l th layer
and (l + 1) th layer and sigmoid is the sigmoid function
(sigmoid(x) = 1

1+ eŠx ). Specially, h(0)
i = xi and zi =

h(N h +1)
i .
The cost function to evaluate the difference between x, c

and �x, �c is defined as:

J (W, b) =
� 1

2m

m�

i=1

||x i Š �xi ||2 +
� 2

2m

m�

i=1

||ci Š �ci ||2

+
� 3

2

�

l

(||W (l ) ||2F + ||b(l ) ||22)

(2)

Figure 4: The annotation details.

where m is the number of samples, � 1, � 2, � 3are hyperpa-
rameters and || · ||F denotes the Frobenius norm.

The first and second terms in Equation 2 indicate aver-
age error of �x and �c. The third term is a weight decay term
for decreasing the values of the weights W and preventing
overfitting (Ng 2011). The hyperparameters control the rel-
ative importance of the three terms. We define � = ( W, b) as
our parameters to be determined. The training of BCDA is
optimized to minimize the cost function:

� � = arg min
�

J (W, b) (3)

The optimization method we adopt is Stochastic Gradi-
ent Descent Algorithm (Bottou 2010). For each iteration, we
perform updates as following:

W = W Š �
�

�W
J (W, b) (4)

b = bŠ �
�
�b

J (W, b) (5)

where � is the step size in gradient descent algorithm.
After training, the middle layer h� N h /2� is a shared rep-

resentation of the input features, considered as the output of
BCDA. The complete algorithm for BCDA is summarized
in Algorithm 1.

Regression Model. To build a correlation between vi-
sual features and fashion semantic space, we further make
the shared representation h� N h /2� produced by BCDA cast
into Y(wc, hs). Specifically, we choose one of the 527 style
words in FSS which has the shortest Euclidean distance with
Y(wc, hs) as the fashion style label of the input image. This
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Table 1: (a)Comparison among different autoencoders
(b)Comparison among different regression models

(a)

Autoencoder SVM
None 0.2083
DA 0.1927

BDA 0.1881
CDA 0.1860

BCDA 0.1841

(b)

Regression BCDA
D-Tree 0.3378
KNN 0.3324
DNN 0.2591
LR 0.1854

SVM 0.1841

step can be considered as a regression problem. We will
compare the experimental results of using different regres-
sion models specifically in Section 5.

5 Experiments

In this section, we first conduct several objective experi-
ments to validate the BCDA by evaluating the mapping ef-
fects between visual features of clothing images and coordi-
nate values in the FSS. Then we show the effectiveness of
our model through some interesting demonstrations.

5.1 Dataset

We build a large full-annotated benchmark dataset, which
employs 32133 full-body fashion show images in the last
10 years downloaded from Vogue. It covers both men and
women clothing, and contains 550 fashion brands.

Annotation details of our dataset. 1) Clothing visual
features. We define the visual features of clothing from two
aspects: color features and pattern features. For the color
features, we extract the five color theme of clothing images
adopting the algorithm proposed by (Wang et al. 2013). For
the pattern features, we invite people to annotate them, and
the annotation details are listed in Figure 4, in which the
“type” feature corresponds to the clothing category in our al-
gorithm. In practice, using these annotated features as train-
ing data, we can train CNN models (Szegedy et al. 2015)
to detect the pattern features. 2) Fashion style feature. For
the annotation of fashion styles, we provide the FSS space
for the annotators, who are well trained with the annotation
method. For each image, they choose a style section in FSS
at first, and then determine a specific coordinate for the im-
age according to the distribution of fashion style words. For
coordinates in the FSS, both warm-cool and soft-hard coor-
dinate values range in [-1, +1] and the granularity of each
dimension is 0.001. For all the annotation features above, 20
annotators (10 males and 10 females) are invited to finish the
annotation task. Each attribute of each image is annotated by
3 different annotators, and the final results are voted or aver-
aged by the original 3 results.

5.2 Metric

To evaluate the mapping effects between visual features
and coordinate values in FSS, we calculate the error be-
tween predicted coordinate values and annotated coordi-
nate values. The error is measured by mean squared error

(a) (b)

Figure 5: Feature contribution analyses.

(a) (b)

Figure 6: Parameter sensitivity analyses. (a)Training data
size. (b)Hidden layer number.

(MSE). All the experiments are performed on 5-folder cross-
validation.

5.3 Results and Analyses

Performance of different autoencoders. Using the same
regression model Support Vector Machine (SVM) (Reben-
trost, Mohseni, and Lloyd 2014), we compare the proposed
BCDA with other different autoencoder settings (None: no
feature learning, DA: Deep Autoencoder, BDA: Bimodal
Deep Autoencoder, CDA: Correlative Deep Autoencoder).
The results are shown in Table 1(a). We can find the bimodal
strategy (with/without “B”) of learning the shared represen-
tation takes effect, which indicates that top and bottom do
have a correlation at feature level. Besides, the correlative-
label strategy (with/without “C”) contributes to the result
too, proving that clothing categories have impact on fash-
ion styles indeed. Moreover, we compare the methods tak-
ing clothing categories as correlative labels and takes them
as features. The performance of the former method (MSE:
0.1841) is better than the latter (MSE: 0.1876), also support-
ing the effectiveness of correlative labels.

Performance of different regression models. Using the
proposed BCDA, we also make several comparisons among
different regression models including Decision Tree (D-
Tree) (Trendowicz and Jeffery 2014), K-Nearest Neighbors
(KNN) (Li et al. 2012), Deep Neural Network (DNN) (Ben-
gio 2009), Linear Regression (LR) (Ho and Lin 2012) and
Support Vector Machine (SVM). As shown in Table 1(b),
D-Tree and KNN have the worst performance. It can be in-
ferred that the regression models leveraging all the samples
simultaneously fit our BCDA better than those relying on
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Figure 7: Fashion style trend of Givenchy.

just a few samples. In the following experiments and demon-
strations, we take the best performing SVM as the regression
model.

Feature contribution analyses. First, we discuss the con-
tributions of top and bottom features separately. As shown
in Figure 5(a), top features contribute more than bottom fea-
tures, which is in accordance with our ordinary feelings that
tops count more in clothing collocation. Then we compare
the contributions of color features and pattern features in
Figure 5(b). It shows that pattern features perform better
than color features, probably because patterns’ combination
has more influence on fashion collocation.

Parameter sensitivity analyses. We further test the pa-
rameter sensitivity about two key parameters with different
values. 1) Training data size. From Figure 6(a), we can find
that as the scale of training data increases the performance
gets better. With the size over 25000, the performance al-
most reaches convergence. Therefore, the size of our whole
dataset (32133) is a proper number. 2) Hidden layer num-
ber. Theoretically, the description ability of BCDA can be
improved by more layers. According to Figure 6(b), the per-
formance do increase with layer number less than 5, but get
worse after the number become larger because of overfitting.
Therefore, we take 5 layers in our experiments. On this con-
dition, the experiment lasts for about 20 minutes in a quad-
core 2.80GHz CPU, 16GB memory environment.

5.4 Demonstration

With the proposed FSS and BCDA, we are capable of under-
standing clothing fashion styles better. Employing our fash-
ion dataset, we conduct some interesting demonstrations to
further show the advantages and universality of our method.

Fashion distribution comparison among different
brands. At fashion shows, different brands tend to present
different styles of clothing. Thus we compare the fash-
ion style distribution of different brands published in 2015,
shown in the rightmost part of Figure 1. We observe that
Missoni’s main style is gorgeous, Libertine tends to present
a classic style, 6397 falls in the natural section intensively,
and Brunello Cucinelli focuses on the chic style. The sample
images in the leftmost part verify these observations.

Figure 8: Feature collocation rules exploration.

Different years’ fashion comparison of the same
brand. Fashion trends of famous brands has always been
a hot issue for fashion people. Focusing on all the fashion
images of one brand (Givenchy) in the last eleven years, we
show the center point of each year and find that the style of
this brand has changed as shown in Figure 7. In 2005, the
brand has a sober style, but moves to a softer delicate sec-
tion in 2010. In the most recent year 2015, it tends to present
a sleek style.

Mining feature collocation rules. Feature collocation is
definitely an important element about fashion. We observe
an interesting case that what kind of top collar and bottom
model collocation follows the fashion. In Figure 8, the co-
occurrence matrix of top collar and bottom model is cal-
culated. The matrix elements stand for the probabilities of
straight/tight/loose pants collocated with each kind of col-
lar, thus every column sums to 1.00. The following two facts
are observed: 1) From the first row of the matrix, we can find
that straight pants match almost every collar in fashion col-
locations. Select the lapel column as example, we compare
the distribution of lapel collar and straight/tight/loose pants
in FSS. Among the three kinds of pants, straight presents a
most similar shape with lapel, which is in accordance with
the probability. 2) Although straight matches well with most
collar shapes, fur/high/round/bateau matched with tight are
also good choices. Moreover, bateau-tight has a even higher
probability than bateau-straight. Thus bateau-tight is also a
classic collocation in fashion shows.

In addition, we apply our model to build a practical ap-
plication named Magic Mirror (Liu et al. 2016), which is
capable of analysing people’s clothing fashion styles auto-
matically.

6 Conclusion

In this paper, we make an intentional step towards better
understanding clothing fashion. The fashion semantic space
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and bimodal correlative deep autoencoder turn out to be ef-
fective. In future work, we will carry on our work in two as-
pects: 1) Taking users’ different preferences about clothing
fashion into consideration, 2) Leverage our model to build
various applications.
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