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Abstract
Grapheme-to-phoneme conversion (G2P) is a crucial step for 
Mandarin text-to-speech (TTS) synthesis, where homograph 
disambiguation is the core issue.  Several machine learning 
algorithms have been proposed to solve the issue by building 
models from well annotated training corpus.  However, the 
preparation of such well annotated corpus is very laboring and 
time-consuming which requires lots of manual hand-label 
work to validate the proper pronunciations of the homographs.  
This work tries to cover this problem by introducing the active 
learning (AL) and semi-supervised learning (SSL) algorithms 
for the homograph disambiguation task using unlabeled data.  
Experiments show that the proposed framework can greatly 
reduce the cost of manual hand-label work while preserving 
the performance of the trained model. 
Index Terms: text-to-speech (TTS) synthesis, homograph 
disambiguation, active learning (AL), Yarowsky algorithm, 
semi-supervised learning (SSL) 

1. Introduction 
Grapheme-to-phoneme (G2P) is of great importance for text-
to-speech (TTS) synthesis.  Unlike the alphabetic languages 
such as English where the main problem of G2P is to generate 
correct pronunciations for out of vocabulary (OOV) words [1], 
the core issue in Chinese G2P conversion is homograph 
disambiguation [2]-[5].  Homograph disambiguation aims to 
get correct pronunciation from several candidates according to 
the context information such as part-of-speech, word and 
position information of the homographs in a word or sentence. 

Conventionally, homograph disambiguation is solved by a 
set of decision rules that are generated manually by experts.  
However, the generation of decision rules is solely dependent 
on the knowledge of experts and can be very time consuming.  
Several machine learning algorithms have also been proposed 
and applied to solve the homograph disambiguation problem, 
including maximum entropy (ME) models with Gaussian or 
inequality smoothing [2], transformation-based error-driven 
learning (TBL) with different methods to generate templates 
[3][4], stochastic decision list [5], etc.  Most of these methods 
have proposed to build models from well annotated training 
corpus and put focus on minimizing the error rate on the test 
set of the used corpus.  However, the preparation of such well 
annotated training corpus is very laboring and time-consuming 
as it requires lots of manual work to get correct pronunciation. 

This work tries to cover the above problem by introducing 
an active and semi-supervised learning framework for the 
homograph disambiguation task using unlabeled data.  In the 
framework, active learning (AL) is used to select a small set of 
most informative samples from the unlabeled data for manual 

labeling and semi-supervised learning (SSL) is then used to 
train the model with a large set of unlabeled data and much 
reduced amount of manual labor. 

Section 2 gives a brief introduction to the TBL algorithm, 
which serves as the base model of our work.  The proposed 
active and semi-supervised learning framework for homograph 
disambiguation is then detailed in Section 3.  The corpus and 
the basic setup for TBL are described in Section 4, followed 
by detailed discussion of experiments in Section 5.  Some final 
remarks are given in Section 6. 

2. Transformation-based learning (TBL) 
Since Transformation-based error-driven learning (TBL) was 
first introduced to solve part-of-speech tagging problem [6], it 
has been one of the most successful rule-based learning 
algorithms in natural language processing.  The idea of TBL is 
to learn an ordered list of transformation rules from the 
candidates according to their contribution to the training data. 

 
Figure 1: Learning process of transformation-based 
error-driven learning (TBL) algorithm. 

Figure 1 shows the learning process of TBL algorithm.  
The unlabeled samples from training corpus will be first 
tagged with an initial tagger.  The tagging results will then be 
compared with the truths given in the annotated corpus.  All 
the error-annotated samples will be used to generate a list of 
candidate transformations according to manually prepared 
templates, where transformation is used to transform original 
tagging results to new ones.  The score of each candidate 
transformation is measured by its contribution (the decrement 
of error numbers after and before applying the transformation).  
The transformation with the highest score is then added to the 
ordered transformation list and the training corpus is updated 
by applying the learnt transformation.  Iterations will continue 
until no more improvements can be made or the highest score 
is below a predefined threshold. 
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3. Active and semi-supervised learning for 
homograph disambiguation 

3.1. Proposed framework 
Figure 2 illustrates the diagram of the proposed framework.  A 
large scale unlabeled corpus has been collected (unlabeled 
texts in Figure 2).  Some samples are selected and labeled 
manually as the seed pool for training the base TBL model 
after a thorough examination of characteristics of different 
homographs.  The trained model is then used to tag the 
samples from the unlabeled pool.  Uncertainty derived from 
entropy is evaluated from the tagging results of these examples.  
Active learning algorithm [7] is used to find most informative 
samples from the unlabeled pool.  The most uncertain samples 
(i.e. the samples with the biggest uncertainty) are believed to 
demonstrate new patterns that have not been found in the 
current labeled pool, and are marked as the most informative 
samples.  They are automatically selected, manually labeled or 
confirmed by experts, and then added to the labeled pool.  
Meanwhile, Yarowsky algorithm [8] (a semi-supervised 
learning method) is carried out by choosing most confident 
samples (i.e. the samples with the lowest uncertainty) with 
current estimated labels, and adding them to the labeled pool.  
The model is retrained using the updated labeled pool so that it 
can learn the new patterns from the newly added samples. 

 
Figure 2: Diagram of the proposed framework that 
combines Yarowsky algorithm and active learning for 
homograph disambiguation. 

3.2. Active learning 
As illustrated in Table 1, the active learning for homograph 
disambiguation starts with an unlabeled pool U0, and a seed 
pool of manually labeled samples A0={xi, xi � U0}.  TBL 
training algorithm is performed on the seed pool A0 to get the 
base model M0.  N iterations continue to retrain the model by 
selecting samples from the unlabeled pool.  The selecting 
strategy considers the uncertainty of the tagging results of the 
samples while applying current model to them.  For iteration n, 
the current model Mn is used to label samples in the unlabeled 
pool Un and calculate the uncertainty for each sample.  
Thereafter, a set of maximum KAL samples (SAL,n) with highest 
uncertainty are selected by the strategy, where the uncertainty 
of each sample must be greater than TAL.  These samples are 
then manually labeled or confirmed by the experts.  
Meanwhile, another set of maximum KSSL samples (SSSL,n) with 
lowest uncertainty are selected, where the uncertainty of each 
sample must be less than TSSL.  The automatically labeled most 
confident samples SSSL,n together with the manually labeled 
most uncertain samples SAL,n are then added to the labeled pool 
An to produce a new labeled pool An+1 for semi-supervised 

learning.  The new model Mn+1 is then retrained over An+1.  
Iterations will terminate if no more improvements can be made. 

Table 1. Active learning for homograph disambiguation. 

1: Unlabeled pool: U0 
2: Seed pool with manual labels: A0={xi, xi�U0} 
3: Train base model using: A0  M0 
4: for n = 0 to N do 
5:       SAL,n = UncertainSampleSelection(Un, An, Mn, KAL, TAL) 
6:       Label or confirm by experts for SAL,n 
7:       SSSL,n = CertainSampleSelection(Un, An, Mn, KSSL, TSSL) 
8:       An+1 = An + SAL,n + SSSL,n 
9:       Un+1 = Un - SAL,n - SSSL,n 
10:     Retrain model using: An+1  Mn+1 
11:     End iteration if no more improvements can made 
12: end for 

3.3. Uncertainty sampling 
In the above framework, the most uncertain samples SAL,n and 
the most confident samples SSSL,n should be automatically 
selected to update the labeled pool and to retrain the model.  In 
this work, entropy is used as the query strategy in active 
learning and confidence measurement in self-training. 

3.3.1. Uncertain sample selection 
For each sample in the unlabeled data pool, the homographs 
contained in the current sample are first disambiguated by the 
current trained model; and a score is computed to measure the 
uncertainty of the current trained model in disambiguating the 
homograph in the current sample. 

A scoring criterion is designed to select at most KAL 
samples that have the top highest uncertainty scores under 
current trained model, where the uncertainty score of each 
selected sample must be greater than a predefined threshold 
TAL.  These samples are believed to contain homographs that 
are difficult to be disambiguated by the current automatically 
trained model.  Incorrect pronunciations might be produced if 
the model cannot deal well with such samples, and will thus 
hurt the performance of the G2P module in getting correct 
pronunciation for the TTS system. 

Manual correction of the labeling results for homographs 
in such most uncertain samples will produce the maximum 
benefit to the model in the next iteration of training procedure. 

3.3.2. Confident sample selection 
On the other hand, the least samples of manual labeling or 
corrections are preferred to reduce the cost of data acquisition. 

Another criterion is used to select at most KSSL samples 
with the top least uncertainty scores under current trained 
model; and the score of each selected sample is less than the 
threshold TSSL.  The homographs contained in these samples 
could be easily disambiguated by the current trained model, 
which means that the current model is quite confident about 
the labeling results of the homographs.  Thus, the estimated 
labels by current model of the homographs in these samples 
are treated as the correct labels directly. 

The samples with most certainty under current model are 
automatically labeled, selected and added to the labeled pool 
for retraining model in next iteration.  The manual labeling is 
not required for such samples.  In this way, the cost of manual 
work in preparing the training data set can be greatly reduced. 
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3.3.3. Uncertainty measurement 
Entropy is often used as a measurement of uncertainty or 
impurity in machine learning, and it can be easily generalized 
to probabilistic multi-label classifiers.  In this work, entropy is 
adopted as the uncertainty measurement for sample x under 
the current model �: 

 ���
i

iix xyPxyPH )|(log)|( ��
 (1) 

Where yi ranges over all possible pronunciations of sample x, 
P�(yi|x) is the probability of pronunciation yi given sample x. 

This work uses Radu’s method [9] to compute probability 
distribution P�(yi|x), as implemented in fnTBL toolkit.  The 
method defines equivalence class as a set of samples that share 
the same characteristics: all samples in the class are applied 
the same TBL rule sequence.  The training set is then divided 
into several equivalence classes, and the distribution for each 
class is estimated by using maximum likelihood estimation: 
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Where c is the equivalence class that sample x belongs to, 
count(c) is the number of all samples in class c, and count(c,yi) 
is the number of samples in class c with pronunciation yi. 

4. Corpus collection and basic TBL setup 

4.1. Corpus collection 
Out of 1036 homographs in Chinese characters [5], 108 key 
homographs have been selected as the target characters for the 
study of homograph disambiguation.  These key homographs 
are most ambiguous and frequently used in our daily life, and 
hence are of great importance for homograph disambiguation.  
Detailed procedures on key homograph character selection can 
be found in [3]. 

A text corpus for homograph disambiguation study is 
collected from the “People’s Daily” newspaper.  At least 2000 
samples (i.e. sentences) are collected for each key homograph 
character.  These sentences are automatically processed by the 
text analysis module of our homegrown Mandarin TTS system 
[10], including word tokenization, part-of-speech tagging, and 
grapheme-to-phoneme conversion.  The pronunciations of the 
homograph characters are further manually checked to ensure 
the accuracy of the corpus. 

4.2. Setup for TBL algorithm 
In this work, TBL algorithm is used not only as the benchmark 
but also as the base model in the active learning framework. 

For the TBL algorithm, the default G2P results based on 
pronunciation dictionary are used as the initial states and the 
manually checked results are used as the target states.  Feature 
selection and template design are two essential components for 
the usage of TBL. 

4.2.1. Features 
Features used in TBL algorithm include adjacent characters 
(from previous 2 to next 2 characters), words (from previous 2 
to next 2 words), part-of-speech (POS) of the words (the POS 
categories use the specification from [11]), the words that 
appear before the homograph in the sentence, the words that 
appear after the homograph in the sentence, and the last 
characters of the right words.  The features are summarized in 
Table 2. 

Table 2. Summarization of the features used in this work. 
The POS categories use the specification from [11]. 

Features Feature description Offset 
LC Character ±2, ±1 
LW Lexical word ±2, ±1, 0
POS Part-of-speech of the word ±2, ±1, 0

LWS Words that appear before the 
homograph in the sentence  - 

RWS Words that appear after the 
homograph in the sentence - 

RWES Last characters of words in RWS - 

4.2.2. TBL templates 
Simplified templates are defined to avoid over-fitting problem.  
For the homograph character LCi, and the pronunciation tag Yi, 
the defined TBL templates might include the templates for the 
above different single features as defined in Equation (3-8). 

 )1 ,2  ( ����	 jYLC iji
 (3) 

 )0 ,1 ,2  ( ����	 jYLW iji
 (4) 

 )0 ,1 ,2  ( ����	 jYPOS iji
 (5) 

 )1,...,10|{ ),( ����� 	 jLWLWSYLWS jiiii
 (6)

 )10,...,1|{ ),( ��� 	 jLWRWSYRWS jiiii
 (7) 

 )( ),( iiii RWSWordEndRWESYRWES ��  (8) 

5. Experiments

5.1.1. Experimental setup 
10-fold cross-validation is used to perform the experiments.  
For each homograph character, all the samples are randomly 
partitioned into 10 subsets.  Out of the 10 subsets, a single 
subset is retrained as the test set for model evaluation, and the 
other 9 subsets are used as the training set.  Cross-validation 
process is repeated 10 times, with each of the 10 subsets used 
exactly once as the test set.  The accuracy of the model for 
homograph disambiguation is computed, and the 10 results 
from all the folds are then averaged to produce the final result 
of accuracy. 

For conventional TBL, TBL transformations are learned 
from all the samples in the training set for each homograph. 

As a comparison, in active and semi-supervised learning 
framework, the training set are treated as unlabeled data; and 
the manual labeling procedure of the most uncertain samples 
SAL,n for each iteration is simulated by providing the annotation 
result in the training set directly. 

5.1.2. Experiments 
Experiments were conducted to evaluate whether the proposed 
active and semi-supervised learning framework can reduce the 
cost of manual labeling while preserving the performance of 
the trained TBL model. 

Different parameter settings of (KAL, TAL, KSSL, TSSL) may 
affect the performance of the proposed framework.  Two 
groups of experiments were conducted.  The first group (A) 
performed experiments on KSSL and TSSL by fixing KAL and TAL.  
Another group (B) performed experiments on KAL and TAL by 
fixing KSSL and TSSL.  Table 3 shows the experimental results 
for homograph ' ' (pronounced as 'bei1' or 'bei4'). 

As can be seen from group (A) in Table 3, the accuracy of 
the proposed framework degrades when KSSL increases.  This 
is because KSSL and TSSL control the number of the most 
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confident samples selected for semi-supervised learning; and 
the accuracy of the estimated labels of these samples will 
affect the performance of the trained model.  On the other 
hand, KAL and TAL parameters control the number of the most 
uncertain samples selected by active learning, and decide the 
number of samples to be manually labeled.  As indicated by 
group (B) in Table 3, the numbers of the manually labeled 
samples are significantly reduced by more than 64%. 

Differences between the automatically selected samples by 
the framework and the original labeled samples in data set are 
further investigated.  Results indicate the difference mainly 
lies in the samples that appear very few times in the data set.  

Out of different combination of parameter settings of (KAL, 
TAL, KSSL, TSSL), (50, 0.5, 50, 0.1) is selected as the parameters 
by considering the balance between the accuracy performance 
of the framework and the number of manually labeled samples 
for each iteration. 

Table 4 shows the results for five key homographs.  As 
can be seen, the proposed framework can significantly reduce 
the manual effort to label the training data that are required for 
the model training; while the performance of the TBL trained 
in the proposed framework is similar to the conventional TBL 
model trained on all the samples. 

Table 4. Performance of the conventional TBL and the 
proposed framework for homograph disambiguation, 

where “% decrease of manual work” is computed by “(# 
samples - # manually labeled samples) / (# samples)”. 

Homograph 
characters 

# 
samples 

# manually 
labeled 
samples 

% decrease 
of manual 

work 

% accuracy 

TBL Proposed 
framework

 29534 4800 83.75% 95.92% 95.06%
 1992 649 67.42% 95.95% 96.40%
 25002 3833 84.67% 97.23% 96.29%
 3267 866 73.49% 98.90% 97.25%
 2413 780 67.68% 97.77% 97.77%

6. Conclusions
Homograph disambiguation is the core issue for grapheme-to-
phoneme conversion in Mandarin text-to-speech synthesis.  A 
large scale well annotated corpus is always required to learn 
models from the corpus by machine learning algorithms.  The 
preparation of such well annotated training corpus is very 
difficult and time-consuming as it will require lots of manual 
hand-label work to validate of the proper pronunciations of the 
homographs.  This work proposes a framework by combining 
the active learning and semi-supervised learning algorithms 

for homograph disambiguation using unlabeled corpus.  In the 
framework, active learning is used to select a small set of most 
informative samples from the unlabeled data for manual 
labeling and semi-supervised learning is used to train model 
with both labeled and unlabeled data.  Experimental results 
indicate that the proposed framework can greatly reduce the 
manual effort in labeling data; while the performance of the 
framework is similar to the conventional method. 
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Table 3. Results of parameter setting experiments for homograph ' ' (with pronunciation 'bei1' or 'bei4'). 

Exp. 
Group KAL TAL KSSL TSSL

# 
iterations 

# manually labeled samples % accuracy of 
estimated labels in SSSL

% accuracy of the proposed 
framework (# learnt TBL rules)# seeds # SAL 

A 10 0.5 
� 0.1 4 

100 
29 83.42% 80.67%       (7) 

1000 0.1 6 43 84.04% 80.67%       (6) 
100 0.1 24 162 86.61% 84.76%     (11) 

B 

10 0.5 10 0.1 100 

100 

620 97.70% 96.65%     (25) 
20 0.5 20 0.1 91 624 98.48% 97.77%     (23) 
30 0.5 30 0.1 59 673 97.70% 97.03%     (24) 
40 0.5 40 0.1 46 618 97.93% 97.77%     (23) 
50 0.5 50 0.1 37 680 97.86% 97.77%     (23) 
70 0.5 70 0.1 26 685 97.76% 97.77%     (24) 
100 0.5 100 0.1 18 754 97.20% 97.03%     (23) 

1) The number of the samples in training set and test set is 2413 and 269 respectively. 
2) The accuracy of the conventional TBL algorithm is 97.77%, and the number of learnt rules is 23. 
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