
Modeling Prosody Patterns for Chinese Expressive 

Text-to-Speech Synthesis 

Zhiyong WU, Lianhong CAI, Helen M. MENG 

Tsinghua-CUHK Joint Research Center for Media Sciences, Technologies and Systems 

Graduate School at Shenzhen, Tsinghua University, Shenzhen 

zywu@sz.tsinghua.edu.cn, clh-dcs@tsinghua.edu.cn, hmmeng@se.cuhk.edu.hk 

 

 
Abstract—This paper proposes an approach for modeling the 

prosody patterns of the acoustic features for Chinese expressive 

text-to-speech (TTS) synthesis.  Based on the observation that the 

speaker usually tends to put more emphasis on one particular 

syllable within a multi-syllabic prosodic word, we identify such 

syllable as the core syllable that can be derived from the semantic 

stress and tone information of the text prompt.  We then classify 

the syllables in speech into four classes, based on their relations 

with the core syllable in a prosodic word.  We analyze the 

contrastive (neutral versus expressive) speech recordings for each 

of four classes, and develop a perturbation model that takes into 

account the prosody pattern to transform neutral speech to 

expressive speech.  Perceptual experiments on both neutral 

speech recordings and neutral TTS outputs involving 13 subjects 

indicate that the proposed approach can significantly enhance 

expressivity in synthesizing expressive speech. 

Keywords-expressive text-to-speech (TTS); prosody pattern; 

non-linear perturbaton model 

I.  INTRODUCTION 

There has been a rich repository of research work in the 
area of expressive speech synthesis [1-4].  Previous research 
has shown that the realization of expressivity can be achieved 
through speech prosody and their acoustic correlates, including 
intonation, amplitude, duration, timing and voice quality [5-8].  
[9] attempted to synthesize four types of emotional speech 
(happiness, sadness, fear, anger) at three levels (strong, weak, 
medium) and found that the performance of linear modification 
model (LMM) is inferior to the approaches of Gaussian 
mixture model (GMM) and classification and regression trees 
(CART).  The main reason is because the two latter approaches 
involve finer partitioning of the prosodic space based on stress 
and linguistic information.  Similar findings were observed in 
[10] for expressive speech synthesis based on text semantics. 

The variation of the acoustic features may reveal some 
prosody patterns while migrating from neutral speech to 
expressive speech.  Several work on the analysis of expressive 
focus speech had proven this.  Compared with neutral speech, 
the pitch and intensity of focus word generally increase, while 
the same features of words preceding the focus words tend to 
decrease in some language [11].  [12] analyzed the pitch and 
durations of vowels from focus speech, and found that the 
durations were shorter and the pitches were higher for high 
vowels than for low vowels.  The durations were analyzed in 
[13] considering the distance between different phones and 

focus word.  Results show that the closer the phone is to a 
focus word, the longer is the duration. 

This work attempts to analyze the prosody patterns of 
Chinese syllables, based on their relative locations with 
respective to the core syllables in the prosodic words.  Here the 
core syllables may be the stressed syllables, the syllables with 
falling tone, etc.  We believe that such analysis will help us 
identify the patterns revealed by the variations of syllable 
acoustic features while migrating from neutral to expressive 
speech.  The patterns can be utilized in improving our existing 
work on perturbation model to synthesize more natural and 
expressive speech for Chinese expressive TTS synthesis. 

The rest of this paper is organized as follows:  Section II 
presents the corpus with contrastive neutral and expressive 
recordings to support our investigation.  Section III describes 
the analysis of acoustic features relating to prosody patterns.  
Section IV details the perturbation model to generate 
expressive speech from neutral speech by incorporating the 
prosody patterns.  Section V describes our experimental design 
and perceptual evaluations of the proposed method.  Finally, 
Section VI lays out conclusions and possible future directions. 

II. CORPUS 

This work is conducted in the context of a spoken dialog 
system in the tourist information domain, where TTS is used to 
generate expressive speech outputs to convey and emphasize 
the beauty and specialties of a scenic spot to the user. 

A. Text Prompts 

Text prompts are derived from text passages, corresponding 
to 20 scenic spots, which are sourced from the Discover Hong 
Kong website of the Hong Kong Tourism Board [14].  Each 
text passage begins with descriptive paragraph introducing the 
attractive features of a scenic spot, followed by an informative 
paragraph about opening hours and/or ticket prices, and finally 
a procedural paragraph about transportation and walking 
directions.  The set of 20 text passages contains 60 paragraphs 
with a total of 357 utterances, 1,358 Chinese prosodic words 
and 3,340 Chinese syllables. 

We have chosen the prosodic word as the basic unit for 
analysis and modeling since it is the smallest constituent at the 
lowest level of prosodic hierarchy, and it consists of a group of 
syllables uttered closely and continuously in an utterance [15]. 
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B. Text Annotation 

The text prompts belong to three different paragraphs.  The 
descriptive paragraph often contains commendatory words to 
describe scenic characteristics or specialties about a spot.  The 
informative and procedural paragraphs are both used to provide 
useful facts.  Speech synthesis for such text prompts will need 
to incorporate appropriate prosodic-word level prosody, with 
suitable emphasis to draw the attention of the tourist. 

1) Semantic Expressivity Annoation 
The PAD model [16] is adopted as the framework to 

annotate text prompts.  A set of heuristics are designed [10,17] 
such that the P/A descriptors can be parameterized from the 
semantic expressivity of text prompts.  The P/A values range 
from -1.0 to 1.0, with 0.0 representing neutral.  Commendatory 
words would get high P values, while words with negative 
connotations would get low or even negative P values.  
Superlative words and the focus of the text message would get 
high A values. 

2) Core Syllable Annotation 
We choose the stress and tone as the cues for annotating the 

core syllable within a prosodic word.  Stress is much related 
with the semantic meaning of the text prompts.  Emphasis is 
usually placed on stressed syllables when uttering expressive 

speech.  In our corpus, superlative words such as “ (most)”, 

“ (super)”, “ (very)”, etc. and commendatory words such as 

“ (popular)”, “ (famous)”, “ (beautiful)”, etc. are 

annotated as stressed syllables.  High tone in Chinese Mandarin 
is another useful cue for the core syllable.  This is because the 
uttering of a syllable with high tone (tone 1) usually requires 
more efforts and the speaker tends to put more emphasis on it. 

C. Speech Recordings 

A male native Mandarin speaker was invited to record in a 
sound-proof studio.  The speaker has several years of research 
experience in expressive speech processing, and hence is 
professional in understanding the differences between neutral 
and expressive speech.  For each text prompt, the speaker was 
asked to record contrastive versions of neutral and expressive 
speech.  The expressive speech recordings should contain 
prosodic-word level expressivity that coveys and emphasizes 
the semantic of the prosodic words (e.g., the beauty of a scenic 
spot).  The 60 text prompts in the 20 passages tend to be long 
and each may contain one to eight sentences, leading to 357 
utterances in total.  The sound files are saved in the wav format 
(16 bit mono, sampled at 16 kHz).  This data is needed for data 
analysis and modeling.  We set aside another disjoint set of 40 
utterances to be used as the test set for experimentation. 

III. ACOUSTIC ANALYSIS OF PROSODY PATTERN 

The objective of this work is to analyze how expressive 
elements are realized in the acoustic signal, and especially how 
syllable with a certain expressivity influences its neighbors to 
reveal a certain prosody pattern. 

A. Acoustic Features 

The acoustic features that are commonly associated with 
prosody include fundamental frequency (f0), intensity and 

speaking rate.  We choose to extract following features: 

• f0 mean, f0 range, f0 slope; 

• root mean square (RMS) energy; 

• duration of the syllable; and 

• pause length before a prosodic word. 

B. Classification of Syllables 

We categorized the syllables in the speech corpus into four 
classes, based on the location of the syllable in relation with the 
core syllable within a prosodic word: 

• Class 1: core syllable in the prosodic word; 

• Class 2: syllable before the core syllable; 

• Class 3: syllable after the core syllable; 

• Class 4: all other remaining syllables. 

C. Analysis of Acoustic Features for Prosody Pattern 

The variations of the acoustic features are not exactly the 
same for all the syllables within a prosodic word while 
migrating from neutral to expressive speech. 

Fig. 1 illustrates the difference of pitch contours between 
neutral speech and its expressive counterpart.  It can clearly be 

seen that, for the two consecutive prosodic words “ (the 

most)” and “ (popular)”, higher emphasis (i.e. higher 

pitch contour) is placed on the superlative “ ” and the 

commendatory “ ” than on the functional syllables “ ” 

and “ ”.  For the prosodic word “ (is Hong Kong’s)”, 

higher emphasis is placed on the syllable “ (pronounced as 

‘xiang1’ in Pinyin)” with high tone than other two syllables.  
All these superlative, commendatory or high tone syllables are 
the core syllables as defined in Section II.B. 

To analyze the prosody patterns of the acoustic features, the 
recorded speech utterances are first automatically segmented 
into syllables with a home-grown segmentation tool and then 
the syllable boundaries are checked manually.  Acoustic 
measurements are then taken from the contrastive recordings 
(neutral versus expressive) of each utterance.  We compute the 
ratio of each acoustic feature (Fexp

/Fneu
, in %) between the 

expressive (Fexp
) and neutral counterparts (Fneu

), where F 
denotes any of the acoustic features described above.  The 
mean ratio is then computed for each of the class, by averaging 

 
Figure 1. Comparison of pitch contours beween neutral speech and  

its expressive counterpart.  The Chinese prosodic words  

from left to right may be translated as:  

“Victoria Peak”, “is Hong Kong’s”, “most”, “popular”, “scenic spot”. 
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the ratio values of all the syllables that are belong to the same 
class.  Results are shown in Table I to Table IV. 

We can observe that the average ratios of the acoustic 
features between expressive and neutral speeches are mostly 
the biggest for Class 1 and the smallest for Class 4.  The ratios 
for Class 2 and Class 3 lie between Class 1 and Class 4, while 
the ratios for Class 3 are mostly bigger than those of Class 2.  
These observations agree with the common perception that the 
speaker has a tendency to put more emphasis on the core 
syllables (i.e. Class 1), which will have more influence on the 
succeeding syllables (i.e. Class 3) than the preceding syllables 
(i.e. Class 2).  This influence tends to decrease when the 
position of the syllables moves farther from the core syllable. 

IV. PERTURBATION MODEL FOR PROSODY PATTERN 

SYNTHESIS 

We have proposed a nonlinear perturbation model [10,17] 
that incorporates the (P, A) values of a text prompt to transform 
neutral speech into expressive speech, as shown below: 

 1 2 3 4 5exp( ) exp( )
exp

neu

F
C P C A C A C P C

F
= − + − +  (1) 

where Fexp
 can be any of the acoustic features (as shown above) 

from expressive speech, Fneu is the corresponding feature from 
neutral speech, Fexp

/Fneu
 is the ratio of acoustic feature between 

expressive and neutral speech, and C1,…,C5 are coefficients.  
C1,…,C5 are the parameters of the perturbation model, and can 
be estimated from the contrastive speech recordings using the 
non-linear least-squares regression method [10,17]. 

A. Perturbation without Considering Prosody Pattern 

In our previous work [10,17], all the speech recordings are 
grouped together to estimated the coefficients, notwithstanding 
the fact that the acoustic features of the core or non-core 
syllables in a prosodic word may vary greatly.  Only one set of 
model coefficients are estimated, and then used in transforming 
the neutral speech into expressive speech. 

B. Perturbation Considering Prosody Pattern 

This work categorized the Chinese syllables into four 
classes, according to the location of the syllable in relation with 
the core syllable in a prosodic word.  The speech recordings are 
then grouped into four categories according to the classes of 
the syllables.  Four sets of model coefficients are estimated, 
with one set of coefficients for each class.  Following steps are 
then utilized to synthesize expressive speech by considering 
prosody pattern: 

• Decide the core syllable of a prosodic word by virtue 
of the principles as shown in Section II.B; 

• Determine the classes of syllables based on their 
location relations with the core syllable; 

• Choose model coefficients according to syllable class; 

• Obtain Fexp
/Fneu

 value based on the perturbation model 
(1) using the chosen model coefficients and P, A values 
of the prosodic word; 

• Synthesize the expressive speech by perturbing the 
acoustic features of neutral speech using the following 
realization method. 

C. Realization of Perturbation with STRAIGHT 

STRAIGHT algorithm [18] is utilized to implement 
perturbation.  Neutral speech input is first analyzed by 
STRAIGHT to obtain spectrum, energy, pitch and durations.  
These acoustic features are then modulated with the proposed 
perturbation model to generate target acoustic features for 
expressive speech.  The perturbed features and spectrum are 
then fed into STRAIGHT to resynthesize expressive speech. 

Let Si(t) be the i-th syllable waveform of the neutral speech 
with boundaries [bi, ei], i.e. begin/end time step; S'i(n) be the 
corresponding i-th syllable waveform of the target expressive 
speech.  The perturbation is then realized through five steps:  

1) Modifiying pitch contour 
Let Pi(t) be the pitch contour of the syllable waveform Si(t). 

Let Pmean,i, Prange,i and Pslope,i be the f0 mean, f0 range and f0 
slope for syllable i; Rmean, Rrange and Rslope be the perturbation 

TABLE I.  STATISTICS OF MEAN RATIO BETWEEN EXPRESSIVE AND 

NEUTRAL ACOUSTIC FEATURES FOR DIFFERENT (P, A) VALUES IN CLASS 1 

(P, A) (0, 0) (0, 0.5) (1, 0.5) (1, 1) 

f0 mean 1.03 1.10 1.09 1.21 

f0 range 1.08 1.35 1.35 1.36 

f0 slope 1.80 2.06 1.74 0.92 

energy 1.15 1.22 1.20 1.36 

duration 1.03 1.04 1.06 1.20 

pause 1.12 1.21 1.12 1.50 

TABLE II.  STATISTICS OF MEAN RATIO BETWEEN EXPRESSIVE AND 

NEUTRAL ACOUSTIC FEATURES FOR DIFFERENT (P, A) VALUES IN CLASS 2 

(P, A) (0, 0) (0, 0.5) (1, 0.5) (1, 1) 

f0 mean 1.01 1.12 1.06 1.18 

f0 range 1.03 1.28 1.30 1.31 

f0 slope 1.79 2.03 1.58 1.05 

energy 1.12 1.18 1.17 1.28 

duration 1.02 1.03 1.05 1.18 

TABLE III.  STATISTICS OF MEAN RATIO BETWEEN EXPRESSIVE AND 

NEUTRAL ACOUSTIC FEATURES FOR DIFFERENT (P, A) VALUES IN CLASS 3 

(P, A) (0, 0) (0, 0.5) (1, 0.5) (1, 1) 

f0 mean 1.02 1.08 1.05 1.19 

f0 range 1.06 1.30 1.32 1.34 

f0 slope 1.78 1.99 1.73 1.01 

energy 1.12 1.20 1.20 1.33 

duration 1.03 1.03 1.06 1.21 

TABLE IV.  STATISTICS OF MEAN RATIO BETWEEN EXPRESSIVE AND 

NEUTRAL ACOUSTIC FEATURES FOR DIFFERENT (P, A) VALUES IN CLASS 4 

(P, A) (0, 0) (0, 0.5) (1, 0.5) (1, 1) 

f0 mean 0.98 1.03 1.02 1.13 

f0 range 1.02 1.25 1.28 1.29 

f0 slope 1.75 1.88 1.36 1.01 

energy 1.08 1.10 1.12 1.21 

duration 0.98 1.01 1.03 1.09 
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ratios for f0 mean, f0 range and f0 slope respectively.  Then the 
new pitch contour P'i(t) for expressive speech is calculated as: 
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2) Modifying syllable duration and pause length 
Let Di be the duration of syllable i and Zi be the pause 

length before syllable i; Rduration and Zduration be the perturbation 
ratios of syllable and pause duration.  The boundaries [b'i, e'i] 
for expressive speech S'i(t) of syllable i are computed as: 
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3) Synthesizing expressive speech with STRAIGHT 
STRAIGHT algorithm is used to synthesize intermediate 

expressive speech S''i(t) (without energy modification) for 
syllable i based on the new pitch contours P'

i(t), time-axis 
mapping information Ti(t) and the original spectrum Mi(t): 
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where ( )f ⋅  represents the synthesis process of STRAIGHT 

algorithm, details of which can be found in [18]. 

4) Modifying energy 
Let Renergy be the perturbation ratio for energy.  The energy 

of the intermediate speech S''i(t) is scaled by Renergy, and further 
smoothed by a Hamming window Wi(t) to generate the final 
expressive speech S'i(t) for syllable i: 
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5) Generating final expressive speech 
 Finally, the entire expressive speech is generated by 

concatenating all the N syllable waveforms: 

 
1

( ) { ( ), ..., ( ), ..., ( )}
i N

S t S t S t S t′ ′ ′ ′=  (6) 

V. EXPERIMENTAL RESULTS 

We devised a set of perceptual experiments to evaluate and 
compare the performance of the perturbation model with or 
without synthesizing prosody pattern. 

A. Experiment on Neutral Speech Recordings 

The first experiment was conducted on the neutral speech 
recordings to validate the efficacy of the proposed perturbation 
model.  We selected 20 text prompts within our tourist domain.  
Each text prompt was tokenized into prosodic words with a 
home-grown tool and annotated with (P, A) values for each 
prosodic word according to the heuristics.  We also verified the 
annotated prosodic words have a good coverage of (P, A) value 
combinations.  We then ran the listening test where each text 
prompt is presented to the subject in four speech files: 

(a) the neutral speech recording from the original speaker 
who recorded the speech corpus; 

(b) the expressive speech recording from the same speaker; 

(c) a perturbed speech signal without prosody pattern from 
the neutral speech recording (a); and 

(d) a perturbed speech signal with prosody pattern from (a). 

13 native Mandarin speakers (nine male, four female) were 
recruited to be subjects for the listening test.  The speech files 
were played to the subjects either in the order (a)-(b)-(x) or (b)-
(a)-(x), where (x) refers to perturbed speech and may be (c) or 
(d).  Each subject was presented with the text prompt while 
listening, and was asked to judge whether (x) sounded more 
similar to its counterpart (a) or (b).  Results shown in Table V 
indicate that the perturbation model with prosody pattern can 
generate appropriate expressivity for over 82% of the speech 
files, which is 9% higher than the perturbation model without 
prosody pattern. 

B. Experiment on Neutral TTS Outputs 

The purpose of this work is to generate expressive speech 
from neutral speech outputs of an existing concatinative TTS 
synthesizer, which utilizes voice libraries from different female 
speaker.  To access the extensibility of the proposed method, a 
new evaluation experiment was conducted to compare between 
perturbation of neutral speech recordings and neutral TTS 
outputs.  Another 20 text prompts were selected, tokenized into 
prosodic words, and annotated with (P, A) values.  Each text 
prompt was presented in the form of seven speech files: 

• the EXPressive and NEUtral speech RECordings from the 
original speaker (denoted as EXP_REC and NEU_REC 
respectively); 

• the speech generated from perturbation of NEU_REC 
with No Prosody Pattern (denoted as NPP_REC); 

• the speech generated from perturbation of NEU_REC 
With Prosody Pattern (denoted as WPP_REC); 

• NEUtral TTS synthetic speech (denoted as NEU_TTS); 

• the speech generated from perturbation of NEU_TTS 
with No Prosody Pattern (denoted as NPP_TTS); and 

• the speech generated from perturbation of NEU_TTS 
With Prosody Pattern (denoted as WPP_TTS). 

The same 13 subjects were recruited in the experiment, and 
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each subject was asked to score each speech file based on a 
five-point Likert scale: 

5 Expressive – natural and expressive like human speech; 

4 Natural – appropriate for the semantics of the message; 

3 Acceptable – flat intonation with some expressivity; 

2 Unnatural – robotic with little expressivity; 

1 Erratic – low intelligibility and weird. 

The average mean opinion score (MOS) for each speech 
file over all subjects was then computed.  Results are shown in 
Fig. 2.  The perturbation without prosody pattern (NPP_REC and 
NPP_TTS) applied to NEU_REC and NEU_TTS increases the MOS 
by 0.3 and 0.6 respectively.  While the perturbation with 
prosody pattern (WPP_REC and WPP_TTS) further increases the 
MOS by 0.4 and 0.5 respectively.  The t-test showed these 
increments are statistically significant with  =0.01.  The results 
demonstrate the efficacy and extensibility of the proposed 
model to synthesize prosody pattern for both neutral speech 
recordings and neutral synthetic speech of TTS outputs.  The 
results also indicate that the method can be successfully 
extended to new speakers. 

VI. CONCLUSIONS AND FUTURE WORK 

This work aims to enhance expressivity of text-to-speech 
(TTS) outputs.  We analyze the acoustic features of the 
contrastive (neutral versus expressive) speech recordings, and 
find that the speaker usually tends to put more emphasis on one 
particular syllable within a multi-syllabic prosodic word while 
uttering the expressive speech.  We call this particular syllable 
the core syllable in the prosodic word, which can be identified 
from the stress or tone information.  Based on this observation, 
we categorize the syllables in speech into four classes, based on 
their locations in relation with the core syllable within a 
prosodic word.  Acoustic feature analyses are then performed 
with respect to each class.  The results indicate that the ratios 
between expressive and neutral speeches acoustic features for 
the four classes have the trend of the prosody pattern that core 
syllables > syllables succeeding the core syllable > syllables 
preceding the core syllable > all other remaining syllables.  
This prosody pattern is then utilized in the perturbation model 
to transform neutral speech to expressive speech with different 
model parameters for different syllable classes.  Two 
perceptual experiments are then conducted by comparing the 
performance of the perturbation model with or without 
considering prosody pattern.  The experimental results indicate 
that the perturbation model with prosody pattern can generate 
appropriate expressive 9% higher than the perturbation model 
without prosody pattern, and the model with prosody pattern 
can achieve MOS score 0.5 higher than the model without 
prosody pattern.  These results demonstrate the efficacy and 
extensibility of the perturbation model for prosody pattern. 
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TABLE V.  PERCEPTUAL EVALUATION OF PERTUBATION WITH OR 

WITHOUT MODELING PROSODY PATTERN, MEASURED BY THE NUMBER (#) 

AND PERCENTAGE (%) OF SPEECH FILES JUDGED TO BE CLOSER TO THE 

EXPRESSIVE VERSUS NEUTRAL RECORDING 

 Without Prosody Pattern With Prosody Pattern 

# of speech files 190 214 

% of speech files 73.1 82.3 
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Figure 2.  Comparison between neutral speech recordings, neutral synthetic

speech and their perturbed renditions with or without  

prosody pattern based on MOS 
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