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ABSTRACT 
 
This paper addresses the problem of highlight sound effects 
detection in audio stream, which is very useful in fields of video 
summarization and highlight extraction. Unlike researches on 
audio segmentation and classification, in this domain, it just 
locates those highlight sound effects in audio stream. An 
extensible framework is proposed and in current system three 
sound effects are considered: laughter, applause and cheer, 
which are tied up with highlight events in entertainments, sports, 
meetings and home videos. HMMs are used to model these 
sound effects and a log-likelihood scores based method is used 
to make final decision.  A sound effect attention model is also 
proposed to extend general audio attention model for highlight 
extraction and video summarization. Evaluations on a 2-hours 
audio database showed very encouraging results. 
 

1. INTRODUCTION 
 
Audio content analysis plays an important role in video content 
parsing. Besides visual features, audio features are widely 
considered in many works, such as highlights extraction [1] and 
video summarization [2]. In order to extract the highlight shot 
more accurately, Rui [1] utilized announcer’s excited speech and 
baseball hit for TV baseball programs; Ma and Lu [2] proposed 
an audio attention model to measure the importance curve of an 
audio track.  However, these works did not consider some 
general highlight sound effects, such as laughter, applause and 
cheer.  These sounds are usually semantically related with 
highlight events in general video, such as entertainments, sports, 
meeting, and home videos. The audience’s laughter often means 
a humor scene in TV shows and applause in meeting often imply 
wonderful presentations. Detection of these highlight sound 
effects in audio stream is very helpful for highlight extraction 
and video summarization. 

Most of previous works on audio content analysis focused 
on general audio segmentation and classification [3][4][5], 
where an audio track is segmented and then each segment is 
classified into one of predefined classes. In comparison with 
these previous works, sound effects detection in audio stream 
must handle the following cases: (i) model more particular sound 
classes and (ii) recall the expected sound effects only and ignore 
audio segments not belonging to any predefined effect. 

An ideal framework of sound effects detection should 
possess following characters: (i) high recall and precision: it 
should exactly locate the interested sound effects and ignore 
others; (ii) extensibility: it should be easy to add or remove 
sound effect models for new requirements. In this paper, an 
extensible framework and an efficient algorithm for highlight 
sound effects detection in audio stream is presented. HMM is 
used to model these sound effects, as suggested in Casey’s sound 
recognition tools [7]. Based on the log-likelihood scores got 
from each model, the final judgment is made.  

The rest of this paper is organized as follows. Audio 
features are discussed in Section 2. The highlight sound effects 
modeling and detection scheme is presented in detail in Section 
3. The highlight effect attention model is illustrated in Section 4. 
In Section 5, experiments and evaluations of the proposed 
framework and algorithm are given. 
 

2. AUDIO FEATURE SELECTION 
 
In our experiment, all audio streams are 16-bit, mono-channel, 
and down-sampled to 8 KHz. Each frame is of 200 samples 
(25ms), with 50% overlaps. Grounded on previous work in 
[3][4][5], two types of features are computed for each frame: (i) 
perceptual features and (ii) Mel-frequency Cepstral Coefficients 
(MFCCs). The perceptual features are composed of short time 
energy, zero crossing rate, sub-band energies, brightness and 
bandwidth. 

A. Short-Time Energy  
Short-Time Energy (STE) provides a convenient representation 
of the amplitude variation over time. The STE is normalized as 
follow: 

( ) NiEEE ikk ≤≤= 1      max/                (1) 

Here Ek is the kth frame’s STE and N is the frame amount of the 
input audio data. 

B. Average Zero-Crossing Rate 
Average Zero-Crossing Rate (ZCR) gives a rough estimate of 
frequency content, which is one of the most important features of 
audio signal.  

C. Sub-band Energies 
In order to model the characteristics of spectral distribution more 
accurately, sub-band energies are used in our method. The entire 
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frequency spectrum is divided into four sub-bands at the same 
interval of 1 KHz. The Sub-band energy is defined as 
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Here �iL and �iH are lower and upper bound of sub-band i, and 
then 

iE  is normalized as 
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D. Brightness and Bandwidth 
Brightness is defined as the frequency centroid. 
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Bandwidth is the square root of the power-weighted average of 
the squared difference between the spectral components and the 
brightness. 
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E. 8 order Mel-frequency Cepstral Coefficients (MFCCs). 
Mel-scale gives a more accurate simulation of human auditory 
system. It’s a gradually warped linear spectrum, with coarser 
resolution at high frequencies. MFCC is one of the Mel-
frequency sub-band energy features. As suggested in [5], 8 order 
MFCCs are used in our experiment. 
 

These features are then combined as a 16-dimensional 
feature vector for a frame. In order to describe the variance 
between frames, the gradient feature of adjacent frames is also 
considered, and is concatenated to the original vector. Thus, we 
get a 32-dimensional feature vector for each frame. 
 

3. SOUND EFFECTS MODELING AND DETECTION 
 

3.1. Sound Effect Modeling 

Most sound effects can be partitioned into several statistically 
significant patterns. More importantly, the time evolution of 
these patterns is critical for sound effect modeling. While both 
GMM and HMM possess states which can represent such 
patterns, HMM also describes the time evolution between states 
using the transition probabilities matrix. Thus, HMM is selected 
to model sound effects. 

A complete connected HMM is used for each sound effect, 
with the continuous Gaussian mixture modeling each state. The 
component number of Gaussian mixture for each state is selected 
as four, since the sound effects are relatively simple and with 
little variation.  Using more components need more training data, 
but give slightly improvement to the accuracy in experiments. 

The training data for each sound effect includes 100 pieces 
of samples segmented from audio-track. Each piece is about 3-
10s long and totally about 10min training data for each class.  
The basic sound effect modeling process is as follows.  At first, a 
clustering algorithm proposed in [6] is used to find a reasonable 
state numbers of HMM for each sound effect. In our experiment, 
the HMM state numbers for applause, cheer and laughter are 2, 4 
and 4 respectively. And then, frame-based feature vectors are 
extracted for estimating the HMM parameters using the Baum-
Welch method, which is widely used in the field of Automatic 
Speech Recognition (ASR). 

3.2. Sound Effect Detection 

3.2.1. Framework Overview 
The system framework of sound effect detection is illustrated in 
Figure 1.  

 
Figure 1. System Framework of sound effect detection 

 
As the Figure 1 shows, a sliding window of t seconds 

moves through the input audio stream with �t overlapping.  In 
our experiment we choose t=1 and�t=0.5 for the tradeoff of the 
algorithm’s efficiency and accuracy.  Each data window is 
further divided into 25ms frames with 12.5ms overlapping, from 
which feature is extracted.  The extracted feature vectors form an 
input of HMM.  In order to reduce the process time, silence 
window is skimmed before testing on HMMs. A silence window 
is detected base on average short time energy and average zero-
crossing rate: 

ZZCRAverage&STEAverage δδ <<       E           (6) 

Here� E and� Z are thresholds of average STE and ZCR 
respectively.  

Non-silence window is compared against each sound effect 
model and then k log-likelihood scores are obtained, given that 
there are k sound effect models. A judgment is made using 
decision algorithm based on these scores.  In this framework, it’s 
easy to add or remove sound effect model to adapt for new 
requirements. 

The recent three decisions are preserved in the Recent 
History Records database for a post-processing. The decision 
given by the algorithm is first send to the Records database and 
the final result is obtained after post-processing. Some simple 
rules are used in this post-processing. For example, considered 
the continuity between adjacent windows, if the consecutive 
three decisions are “A-B-A”, they are modified to “A-A-A”. 
 
3.2.2. Log-likelihood Scores Based Decision Method 
The most important issue is how to do decision based on the log-
likelihood scores. Unlike audio classification, we can’t simply 
classify the sliding window into the class which has the 
maximum log-likelihood score. Sliding window not belonging to 
any predefined sound effect should be ignored. 
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Figure 2 illustrates the flowchart of the proposed log-
likelihood based decision method.  From Figure 2, each log-
likelihood score is examined to see if the window data is 
“accepted” by the corresponding sound effect. To implement this 
task, an optimal decision is made by minimizing the following 
cost function [8], based on Bayesian decision theory, 

 
Figure 2. The flowchart of log-likelihood based decision  
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(7) leads to the Bayesian optimal decision rule [9]: 
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where sj is the log-likelihood score under HMM of sound effect 
Cj; )|( jj Csp  and )|( jj Csp are probability distributions of log-

likelihood scores of the samples within and outside Cj 
respectively; Rj is the Bayesian threshold: 
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The priori probabilities are estimated based on our database. The 
cost of FR is set larger than that of FA, given that a high 
recall ratio is more important for summarization and 
highlight extraction. 

To implement Eq. (8), )|( jj Csp  and )|( jj Csp are both 

estimated from our database.  Figure 3 (a) illustrates the scores 
distributions of samples within and outside the sound effect 
applause. These distributions are asymmetric since the log-
likelihood scores are less or equal to zero. Considered that 
Gaussian distribution is symmetric, it’s more reasonable to 
approximate these distributions’ probability density function 
with negative Gamma distribution, as illustrated in Figure 3 (b). 
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where parameters �and � are estimated as: 
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where �  and �  are mean and standard deviation of log-
likelihood scores.  In order to get an accurate estimation of all 
these parameters, it’s necessary to prune abnormal scores first. In 
our experiment, the abnormal score is defined as those whose 
distance with � are larger than 2�. In each iteration� and �
are calculated firstly, and then those abnormal ones are pruned. 
The iteration is stopped until there is no abnormal data in score 
set any more. 

Based on Eq. (8), each input window is examined if it is 
“accepted” by a sound effect.  If it is accepted by a sound effect, 
the corresponding likelihood score, which is also considered as 
confidence, is added to the candidate stack, as the Figure 2 
shows.  After going through all the log-likelihood scores, the 
final decision is made as following.  If the stack is empty, the 
input window does not belong to any registered model; 
otherwise, it is classified into the ith sound effect with the 
maximum confidence,  

))|((maxarg jj
j

Cspi =                            (12) 

 
     (a)               (b)  

Figure 3. (a) log-likelihood scores distributions; (b) 
Approximate (a) with Gamma distribution 

 
 

4. SOUND EFFECT ATTENTION MODEL 
 
Based on the location of these highlight sound effects, an 
extended audio attention model can be established, which 
describe the saliency of each sound effect.  It’s very helpful for 
further highlight extraction and video summarization. In this 
paper, two characters are used to represent sound effect attention 
model. One is loudness, which can be represented by its energy; 
the other is the confidence in some sound effect class, which is 
represented by the log-likelihood score under corresponding 
HMM. 

These two characters are normalized as: 
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where Eavr and sj denote the average energy and log-likelihood 
score under model j of an audio segment respectively. Max_Eavr 
and Max_sj are the maximum average energy and log-likelihood 
score under model j in an entire audio stream. Then the attention 
model for class j is defined as: 

jj PEM ⋅=                                   (14) 

Figure 4 illustrates the sound effect attention curves of three 
effects, which include laughter, applause and cheer, for 1 minute 
clip of the NBC’s TV show “Hollywood Square”. 
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Figure 4. Sound effect attention model curves 

 
5. EXPERIMENTS 

 
The evaluations of the proposed algorithm are performed on our 
database.  Three sound effects, including laughter, applause and 
cheer, are modeled. The training data for each sound effect 
includes 100 pieces of samples. Each piece is about 3-10s long 
and totally about 10min training data for each class. The testing 
database is about 2 hours videos, with different programs and 
different language, including NBC’s TV show “Hollywood 
Square” (30 min), CCTV’s TV show “Lucky 52” (60 min) and a 
live program record of table tennis championship (30 min). All 
the audio-tracks are first manually labeled. And then, the audio 
streams are segmented into 1-second windows with 0.5-second 
overlap, each window get a ground truth according to the labels. 

In order to estimate the log-likelihood distributions in 
Figure 3 more accurately, two kind distribution curves, Gaussian 
and Gamma distribution, are compared.  Recall and precision, 
which is always used in retrieval system evaluation, are used to 
measure the performance of our system. With all other 
parameters kept the same, the comparison results on the 30min 
“Hollywood Square” are showed in Table 1.  From the Table, it 
can be seen that Gamma distribution performs much better than 
Gaussian distribution.  Compared with Gaussian distribution, 
Gamma distribution increases the precision remarkably (about 
9.3%) while just affects the recall ratio lightly (about 1.8%).  

Table 1. Performance on different p.d.f. distribution 
p.d.f. Sound Effect Recall Precision 

laughter 0.959 0.791 
applause 0.933 0.668 Gaussian 

cheer 0.907 0.906 
laughter 0.927 0.879 
applause 0.910 0.850 Gamma 

cheer 0.907 0.916 
 

Results of general tests on all the 2-hours data are listed in 
Table 2. From Table 2, it can be seen that the performance is 
encouraging.  The average recall is about 92.95% and precision 
is about 86.88% respectively. The high recall can meet the 
requirements well for highlights extraction and summarization. 
However, there still exist some mis-detections. In the table tennis 
championship, sometimes the reporter uses brief and exciting 
voice for a wonderful play, which is often detected as laughter, 
thus makes the laughter’s precision is a little low. Moreover, 
when sound effects are mixed with music, speech and other 
complicated environment sounds, it’s also hard to make a 

judgment, that’s why the recall of TV shows are somewhat lower  
than that of the table tennis match, which has a relative quiet 
environment.  

Table 2. Performance of the algorithm 
Video Sound Effect Recall Precision 

laughter 0.927 0.879 
applause 0.910 0.850 

Hollywood 
Square 

cheer 0.907 0.916 

laughter 0.956 0.813 
applause 0.894 0.826 Lucky 52 

cheer 0.910 0.917 

laughter 0.977 0.778 
applause 0.956 0.945 

Table Tennis 
Championship 

cheer 0.957 0.946 

 
6. CONCLUSION 

 
In this paper, we have presented in detail our framework and 
algorithm for highlight sound effects detection in audio stream. 
Three highlight sound effects are considered in current system: 
laughter, applause and cheer, which are mostly semantically 
related with interesting events in TV shows, sports, meeting and 
home videos. HMMs are used to model sound effects and a log-
likelihood based method is proposed to make decision. A sound 
effect attention model is also proposed for further highlight 
extraction and summarization. Experimental evaluations have 
shown that the algorithm can obtain very satisfying results. 
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